
Resolving Token-Space Gradient Conflicts: Token Space Manipulation for
Transformer-Based Multi-Task Learning

Supplementary Material

A. Additional Related Works

Multi-Task Architectures. Various multi-task architec-
tures can be categorized based on how the parameters or
features of the sharing network are distributed among tasks.
The widely used shared trunk structure comprises a com-
mon encoder shared by multiple tasks and a dedicated de-
coder for each task [11, 41, 53, 71]. A tree-like architecture,
with multiple division points for each task group, offers a
more generalized structure [4, 25, 40, 56]. The cross-talk ar-
chitecture employs separate symmetrical networks for each
task, utilizing feature exchange between layers at the same
depth for information sharing between tasks [20, 61]. The
prediction distillation model [16, 57, 61, 72] incorporates
cross-task interactions at the end of the shared encoder,
while the task switching network [19, 42, 54, 55] changes
network parameters depending on the task.

B. Experimental Settings

B.1. Datasets

We evaluate our method on three benchmarks: NYUD-v2,
PASCAL-Context, and Taskonomy. NYUD-v2 contains 4
vision tasks: Our evaluation is based on depth estimation,
semantic segmentation, surface normal prediction, and edge
detection. PASCAL-Context contains 5 tasks: We evaluate
semantic segmentation, human parts estimation, saliency
estimation, surface normal prediction, and edge detection.
We used 11 tasks for Taskonomy: We evaluate Depth Eu-
clidean (DE), Depth Zbuffer (DZ), Edge Texture (ET), Key-
points 2D (Key2D), Keypoints 3D (Key3D), Normal (N),
Principal Curvature (PC), Reshading (R), Segment Unsup
2d (S2D), and Segment Unsup 2.5D (S25D).

B.2. Implementation Details

For experiments, we adopt ViT [14] pre-trained on
ImageNet-22K [12] as the transformer encoder. The mod-
els are trained for 60,000 iterations on both NYUD [51] and
PASCAL [17] datasets with batch size 6. We use Adam op-
timizer with learning rate 2×10−5 and 1×10−6 of a weight
decay with a polynomial learning rate schedule. Follow-
ing the previous works [66, 67], the cross-entropy loss is
used for semantic segmentation, human parts estimation,
and saliency, edge detection. Surface normal prediction and
depth estimation use L1 loss.

B.3. Design and Implementation Strategy
To improve efficiency, we perform SVD only once early in
training to estimate the feature space for conflict analysis.
Gradient conflicts are measured in a pairwise manner across
tasks, and the average number of conflicts in each space
is used to guide token expansion. Based on this, we stati-
cally allocate a small number of task-specific tokens (six in
our setup) as learnable parameters, independently applied
at each layer. These tokens are fixed during training and
do not adapt dynamically. For NYUD-v2 and PASCAL-
Context, we use the full training sets to compute gradient
statistics, while for Taskonomy, covariance is estimated us-
ing 100 randomly sampled mini-batches. The assignment
of Token Modulation (TM) and Token Expansion (TE) is
determined by a manually chosen activation ratio, which we
analyze in Fig. 6. Rather than activating all components uni-
formly, TM and TE are selectively applied to layers with the
highest conflict levels, either individually or jointly, based
on their effectiveness in reducing task interference.

B.4. Evaluation
For semantic segmentation, we utilize mean Intersection
over Union (mIoU). Surface normal prediction performance
is measured by the mean angular distance between the pre-
dicted output and ground truth. Depth estimation is evalu-
ated using Root Mean Squared Error (RMSE). For saliency
estimation and human part segmentation, we employ mIoU.
Edge detection is assessed using the optimal-dataset-scale
F-measure (odsF). For Taskonomy, we adopt RMSE for
principal curvature and L1 distance for the remaining tasks.

C. Additional Experiments

Comparison with Multi-Task Optimization. In Tabs. 8
to 10, we further evaluate the proposed DTME-MTL
against previous multi-task optimization approaches using
different backbone sizes. Our method demonstrates signif-
icant improvements in multi-task performance with mini-
mal increases in parameters. Specifically, DTME-MTL re-
sults in a parameter increase of 0.089% for ViT-L, 0.23%
for ViT-S, and 0.46% for ViT-T.
Analysis on the Modulator Configuration. In Tab. 11, we
show the performance difference based on the configuration
of the token modulators. Specifically, we compared the out-
comes obtained when employing affine transformation and
batch normalization, which could be considered as the most
common and straightforward approaches. Through experi-



Table 8. Comparison with multi-task optimization approaches on Taskonomy across 11 different tasks with ViT-L. Non-converged results
are indicated with a dash.

Task DE DZ EO ET Key2D Key3D N PC R S2D S25D
Metric L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m ↑ (%)

ST 0.0141 0.0146 0.0992 0.1716 0.1631 0.0801 0.2133 0.7134 0.1342 0.1688 0.1419 0.00

GD 0.0153 0.0156 0.1196 0.1757 0.1729 0.0896 0.2215 0.7451 0.1576 0.1826 0.1537 -8.92
GradDrop 0.0170 0.0195 0.1235 0.1757 0.1753 0.0909 0.2818 0.7679 0.1663 0.1916 0.1543 -17.07
MGDA - - - - - - - - - - - -
UW 0.0152 0.0155 0.1195 0.1755 0.1728 0.0897 0.2356 0.7436 0.1569 0.1830 0.1538 -9.36
DWA 0.0153 0.0156 0.1197 0.1757 0.1730 0.0897 0.2214 0.7441 0.1576 0.1827 0.1537 -8.96
PCGrad 0.0152 0.0156 0.1192 0.1749 0.1699 0.0893 0.2310 0.7475 0.1577 0.1825 0.1480 -8.63
CAGrad 0.0155 0.0156 0.1175 0.1756 0.1649 0.0860 0.2421 0.7544 0.1591 0.1854 0.1554 -9.32
IMTL 0.0151 0.0156 0.1194 0.1755 0.1726 0.0895 0.2199 0.7432 0.1569 0.1824 0.1533 -8.57
Align-MTL 0.0150 0.0155 0.1136 0.1733 0.1633 0.0862 0.2512 0.8029 0.1643 0.1803 0.1445 -8.78
Nash-MTL 0.0151 0.0154 0.1138 0.1732 0.1644 0.0863 0.2507 0.7656 0.1544 0.1833 0.1452 -7.95
FAMO 0.0153 0.0157 0.1196 0.1757 0.1730 0.0897 0.2221 0.7444 0.1575 0.1830 0.1534 -8.99
DTME-MTL 0.0127 0.0130 0.1088 0.1731 0.1665 0.0852 0.1654 0.6890 0.1389 0.1661 0.1404 +2.41

Table 9. Comparison with multi-task optimization approaches on Taskonomy across 11 different tasks with ViT-S. Non-converged results
are indicated with a dash.

Task DE DZ EO ET Key2D Key3D N PC R S2D S25D
Metric L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m ↑ (%)

ST 0.0255 0.0255 0.1285 0.1727 0.1653 0.0918 0.3973 0.8562 0.1864 0.1824 0.1647 0.00

GD 0.0244 0.0243 0.1501 0.1778 0.1844 0.1009 0.4105 0.9087 0.2325 0.2032 0.1822 -8.04
GradDrop 0.0253 0.0253 0.1533 0.1785 0.1865 0.1021 0.4399 0.9246 0.2408 0.2063 0.1791 -10.42
MGDA - - - - - - - - - - - -
UW 0.0242 0.0242 0.1498 0.1778 0.1847 0.1007 0.4064 0.9079 0.2312 0.2033 0.1822 -7.74
DWA 0.0242 0.0242 0.1500 0.1778 0.1844 0.1008 0.4097 0.9071 0.2316 0.2032 0.1822 -7.84
PCGrad 0.0248 0.0248 0.1501 0.1755 0.1761 0.1001 0.4306 0.9181 0.2371 0.2023 0.1772 -8.12
CAGrad 0.0254 0.0255 0.1516 0.1738 0.1698 0.0983 0.4535 0.9282 0.2442 0.2068 0.1849 -9.74
IMTL 0.0236 0.0237 0.1456 0.1756 0.1760 0.0988 0.4151 0.9055 0.2222 0.2010 0.1794 -5.74
Align-MTL 0.0266 0.0264 0.1499 0.1736 0.1700 0.0986 0.4659 0.9868 0.2604 0.2030 0.1780 -11.51
Nash-MTL 0.0235 0.0235 0.1432 0.1745 0.1718 0.0975 0.4230 0.9225 0.2268 0.1985 0.1775 -5.41
FAMO 0.0243 0.0243 0.1499 0.1778 0.1846 0.1008 0.3841 0.9080 0.2321 0.2027 0.1816 -7.31
DTME-MTL 0.0196 0.0200 0.1372 0.1754 0.1712 0.0958 0.3129 0.8333 0.1955 0.1907 0.1698 +3.62

Table 10. Comparison with multi-task optimization approaches on Taskonomy across 11 different tasks with ViT-T. Non-converged results
are indicated with a dash.

Task DE DZ EO ET Key2D Key3D N PC R S2D S25D
Metric L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. RMSE ↓ L1 Dist. ↓ L1 Dist. ↓ L1 Dist. ↓ △m ↑ (%)

ST 0.0250 0.0256 0.1388 0.1755 0.1670 0.0958 0.3856 0.9066 0.2132 0.1878 0.1722 0.00

GD 0.0266 0.0278 0.1593 0.1794 0.1865 0.1047 0.4752 0.9467 0.2568 0.2081 0.1897 -11.10
GradDrop 0.0276 0.0284 0.1624 0.1807 0.1884 0.1064 0.4741 0.9611 0.2658 0.2108 0.1860 -12.67
MGDA - - - - - - - - - - - -
UW 0.0266 0.0277 0.1593 0.1795 0.1865 0.1045 0.4757 0.9466 0.2567 0.2080 0.1896 -11.07
DWA 0.0266 0.0274 0.1593 0.1794 0.1866 0.1045 0.4743 0.9465 0.2567 0.2080 0.1897 -10.95
PCGrad 0.0273 0.0285 0.1596 0.1768 0.1807 0.1043 0.4785 0.9689 0.2644 0.2080 0.1854 -11.55
CAGrad 0.0290 0.0305 0.1641 0.1747 0.1731 0.1051 0.4884 0.9870 0.2828 0.2136 0.1945 -14.64
IMTL 0.0263 0.0272 0.1558 0.1772 0.1810 0.1025 0.4730 0.9525 0.2458 0.2065 0.1868 -9.24
Align-MTL - - - - - - - - - - - -
Nash-MTL 0.0261 0.0270 0.1536 0.1762 0.1766 0.1017 0.4590 0.9649 0.2496 0.2039 0.1846 -8.28
FAMO 0.0266 0.0275 0.1592 0.1795 0.1865 0.1047 0.4746 0.9466 0.2566 0.2080 0.1898 -10.97
DTME-MTL 0.0236 0.0241 0.1494 0.1765 0.1790 0.0998 0.4138 0.8921 0.2290 0.1959 0.1824 -2.88

Table 11. We compare task performance based on the configuration of the modulator. Specifically, we compare the performance of tasks
using an affine transformation against those using a batch normalization layer as configurations for the modulator.

NYUD-v2 PASCAL-Context
Semseg Depth Normal Edge Semseg Parsing Saliency Normal EdgeModel
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

TM+TE (Affine) 38.27 0.6370 21.64 57.90 66.18 56.29 83.21 15.26 47.00
TM+TE (Batch Norm) 37.42 0.6550 23.16 56.10 60.80 53.29 82.59 15.73 44.90



Table 12. We assess task performance by comparing scenarios where we freeze the backbone network after expansion (w/ Freeze) and
where we don’t (w/o Freeze).

NYUD-v2 PASCAL-Context
Semseg Depth Normal Edge Semseg Parsing Saliency Normal EdgeModel
mIoU ↑ RMSE ↓ mErr ↓ odsF ↑ mIoU ↑ mIoU ↑ maxF ↑ mErr ↓ odsF ↑

TM+TE (w/ Freeze) 34.80 0.6730 22.48 56.00 58.34 52.96 82.86 15.63 43.20
TM+TE (w/o Freeze) 38.27 0.6370 21.64 57.90 66.18 56.29 83.21 15.26 47.00

(a) Results on NYUD-v2.

(b) Results on PASCAL-Context.

Figure 5. We assess the performance of tasks based on the proportion of total variance r. The results are displayed for both (a) NYUD-v2
and (b) PASCAL-Context.

(a) Results on NYUD-v2.

(b) Results on PASCAL-Context.

Figure 6. The performance of tasks based on the ratio of the number of expanded layers to the total number of layers. The results are
displayed for both (a) NYUD-v2 and (b) PASCAL-Context.

ments, we find that affine transformations consistently ex-
hibit better performance across all tasks compared to batch
normalization layers used as modulators for both datasets.
Analyzing Performance Differences with Backbone Net-
work Freezing. In Tab. 12, we examine the performance

variation based on whether we freeze the existing backbone
network components when training the expanded network
after implementing the proposed dynamic token modula-
tion and expansion. The results indicate that training net-
works without freezing the existing backbone network com-



ponents leads to significantly better performance compared
to training networks with freezing. We guess that allow-
ing modifications to the learned token space after expansion
helps the network to dynamically partition the token space
for each task.
Influence of r on SVD Approximation. In Fig. 5, we il-
lustrate how the proportion of total variance r impacts the
approximation of a token’s range and null space. We as-
sess the performance of tasks across five values of r (1, 10,
100, 500, 1000). Our results suggest that the value of r has
minimal impact on task performance, implying that there is
less need for extensive tuning of the r parameter to optimize
performance. In our other experiments, we chose r as 100
for training.
Impact of the Number of Layers Expanded by DTME-
MTL. DTME-MTL expands a subset of transformer lay-
ers selected based on the severity of gradient conflicts. In
Fig. 6, we analyze how varying the number of expanded
layers affects task performance. The x-axis denotes the ra-
tio of expanded layers to the total number of layers. We ob-
serve that applying TM+TE to approximately 25%–50% of
the layers yields consistent performance gains across tasks
while maintaining parameter efficiency. Performance im-
proves as more high-conflict layers are expanded, but begins
to degrade when expansion exceeds 50%, especially when
low-conflict layers are included. This suggests that over-
expansion can be detrimental. Table 2 further confirms that
using a moderate expansion ratio (50%) avoids overfitting,
whereas Fig. 6 highlights that indiscriminate expansion into
less conflicting layers harms performance. These findings
underscore the importance of both the extent and location
of TM+TE application.
Effect of Swapping Conflict Types. In Tab. 13, we present
the results of an experiment on NYUD-v2 where we inten-
tionally swap the conflict types targeted by each method.
Specifically, Token Expansion (TE) is applied to layers with
severe range space conflict, and Token Modulation (TM) is
applied to layers with severe null space conflict—opposite
to our standard configuration. This reversal leads to a clear
performance drop, confirming that each method is most ef-
fective when applied to the type of conflict it is designed to
resolve. These results support our design choice of assign-
ing TM to range space conflict and TE to null space conflict.

Table 13. Performance comparison across selection strategies.
Method Random Reverse Swap Standard

△m ↑ (%) -2.966 -6.167 -2.608 +0.044

D. Additional Analysis
Further Justification for Targeted TM/TE Assignment.
Prior work [46] suggests that fine-tuning from a pretrained
model tends to remain in the same loss basin, preserving
the structure of the pretrained feature space. Accordingly,

we view the token space during fine-tuning as constrained
by the span of the pretrained features. If the conflict lies
within this span (i.e., the range space), it can be resolved by
rotating the token space—achievable via a modulator, since
affine transformations include rotation. However, if the con-
flict resides in the null space, it lies outside the span and can-
not be sufficiently addressed by modulation alone. In such
cases, expanding the token space with task-specific tokens
helps relax this constraint. We theoretically support this
view in Propositions 1 and 2 (with proofs in Appendix E),
which analyze how each method addresses conflict in its re-
spective subspace. This is further validated empirically: we
measure the reduction in gradient conflicts by comparing
the start and end of training in each space (Tab. 14). The re-
sults show that Token Modulation (TM) is more effective in
reducing conflicts in the range space, while Token Expan-
sion (TE) is more effective in the null space. This consis-
tency between theoretical analysis and empirical behavior
supports our design choice to selectively apply TM and TE
based on the dominant type of conflict in each layer.
Token-Level vs. Parameter-Level Conflict Handling.
Parameter-space conflicts reflect an aggregate gradient
across all tokens, which makes it difficult to localize or dis-
entangle the source of interference. In contrast, token-level
conflicts can be measured for each individual token, allow-
ing more localized and fine-grained analysis. This granu-
larity enables our method to selectively modulate or expand
tokens based on where the conflict occurs. Furthermore, by
decomposing the token space into range and null compo-
nents—depending on whether the pretrained model already
spans those directions—we adaptively apply Token Modu-
lation (TM) or Token Expansion (TE) to address conflicts.
Such space-aware conflict resolution is fundamentally in-
feasible in parameter space, where task interference is en-
tangled across layers and tokens.
Comparison with LoRA in Multi-Task Inference. As
shown in Tab. 1, the baseline (ST) corresponds to full
fine-tuning and serves as an upper bound on performance.
While LoRA [26] is a parameter-efficient method, assign-
ing a separate LoRA module for each task leads to dis-
joint sets of task-specific weights. Even when merged into
the base model, these configurations require separate for-
ward passes per task, negating the efficiency benefits of
multi-task learning (MTL). In contrast, our method main-
tains shared weights across tasks and allows all outputs to
be computed jointly in a single batched tensor operation
on GPU. This enables highly parallel inference with only
a 13.4% overhead per task, whereas the inference time in
LoRA scales linearly with the number of tasks.

Table 14. Reduction in gradient conflict numbers (NYUD-v2).
Method Num(gR,i · gR,i ≤ 0) Num(gN ,i · gN ,i ≤ 0)

TM 11.60 % ↓ 8.92 % ↓
TE 4.64% ↓ 15.44 % ↓



E. Theoretical Analysis
E.1. Proof of Proposition 1
Proposition 1. When the input token Tin for input sample Xl spans the range space of T̃s, optimizing the token modulators
{Mi}Ki=1 reduces gradient conflicts in the row space of T̃s and leads to a reduction in the multi-task loss.

Proof. Let the loss function Li be a function of the shared parameters Θs, the token modulatorMi, and the input data Xl.
Since transformers convert input data into tokens, we consider the loss to be a function of one of the input tokens, Tin, rather
than X l. To represent the updating step during optimization, we use the superscript t for current variables, such as Θt

s, and
Mt

i, and t+ 1 for the next-step variables, such as Θt+1
s , andMt+1

i .
In cases where the input token Tin spans the row space of T̃s, this can be expressed as follows:

UNUT
N∇Tin

Li(Θ
t
s,Mt

i, Tin) ≃ 0 (5)

Since the row space and null space are perpendicular to each other, with their dimensions summing to the entire space, the
following holds according to Eq. (5):

K∑
i=1

∇TinLi =

K∑
i=1

(URUT
R + UNUT

N )∇TinLi ≃
K∑
i=1

(URUT
R)∇TinLi (6)

Let the token modulatorMi be a p× p matrix that manipulates the input token Tin.

K∑
i=1

∇Tin
Li =

K∑
i=1

(URMt
i)(URMt

i)
T · ∇Mt

i
Li · ∇Tin

Mt
i (7)

The total multi-task loss can be represented using a Taylor expansion. Assuming η ≪ 1, we can ignore the second-order
terms of η:

K∑
i=1

Li(Θ
t+1
s ,Mt+1

i , Ts) =
K∑
i=1

Li(Θ
t
s,Mt

i, Ts) +
K∑
i=1

∇Θt
s
Li(Θ

t
s,Mt

i, Ts)(Θt+1
s −Θt

s) (8)

+

K∑
i=1

∇Mt
i
Li(Θ

t
s,Mt

i, Ts)(Mt+1
i −Mt

i) (9)

=

K∑
i=1

Li(Θ
t
s,Mt

i, Ts)− η|
K∑
i=1

∇Θs
Li(Θ

t
s,Mt

i, Ts)|2 (10)

−η
K∑
i=1

|∇Mt
i
Li(Θ

t
s,Mt

i, Ts)|2 (11)

By optimizing the modulatorMt
i so that |∇Mt

i
Li(Θ

t
s,Mt

i, Tin)| approaches zero for each task i = 1, 2, . . . ,K, we can
alleviate gradient conflicts in the row space of T̃s (as Eq. (7) also approaches zero) and reduce the overall multi-task loss,
since Eq. (11) is always greater than or equal to zero.

E.2. Proof of Proposition 2
Proposition 2. When the input token Tin for input sample Xl spans the null space of T̃s, token expansion using {Ti}Ki=1

alleviates the increase in multi-task loss caused by gradient conflicts in the null space of T̃s.

Proof. Let the loss function Li be a function of the shared parameters Θt
s, the task-specific token T t

i , and the input data X t.
Similarly, since transformers convert input data into tokens, we consider the loss to be a function of one of the input tokens,
T t
in, rather than X t. To represent the updating step during optimization, we use the superscript t for current variables, such

as Θt
s, T t

in andMt
i, and t+ 1 for the next-step variables, such as Θt+1

s , T t+1
in andMt+1

i .
In the case where the input token T t

in spans the null space of T̃s, this can be expressed as follows:

K∑
i=1

URUT
R∇T t

in
Li(Θ

t
s, T t

in, T t
i ) ≃ 0 (12)



The derivative of the task-specific loss Li with respect to the expanded token, including the input token T t
in and the

learnable task-specific tokens T t
i , is given as follows:

K∑
i=1

∇[T t
in,T t

i ]Li (13)

=

K∑
i=1

([
UR 0d×K
0K×d UR,i

] [
UR 0d×K
0K×d UR,i

]T
+

[
UN 0d×K
0K×d 0K×K

] [
UN 0d×K
0K×d 0K×K

]T )[∇T t
in
Li

∇T t
i
Li

]
(14)

=

K∑
i=1

[
URUT

R + UNUT
N 0d×K

0K×d UR,iUT
R,i

] [
∇T t

in
Li

∇T t
i
Li

]
(15)

≃
K∑
i=1

[
UNUT

N 0d×K
0K×d UR,iUT

R,i

] [
∇T t

in
Li

∇T t
i
Li

]
(16)

=

K∑
i=1

[
(UNUT

N )∇T t
in
Li

(UR,iUT
R,i)∇T t

i
Li

]
(17)

The total multi-task loss can be expressed as follows:

Li(Θ
t+1
s , T t+1

in , T t+1
i ) = Li(Θ

t
in, T t

s , T t
i ) +∇Θt

s
Li(Θ

t
s, T t

s , T t
i )(Θ

t+1
s −Θt

s) (18)

+∇T t
in
Li(Θ

t
s, T t

s , T t
i )(T t+1

in − T t
in) (19)

+∇T t
i
Li(Θ

t
s, T t

s , T t
i )(T t+1

i − T t
i ) (20)

= Li(Θ
t
s, T t

in, T t
i )− η∇Θt

s
Li(Θ

t
s, T t

s , T t
i ) ·

K∑
i=1

∇Θt
s
Li(Θ

t
s, T t

in, T t
i ) (21)

−η(UNUT
N )∇T t

in
Li(Θ

t
s, T t

in, T t
i ) ·

K∑
i=1

(UNUT
N )∇T t

in
Li(Θ

t
s, T t

in, T t
i ) (22)

−η(UR,iUT
R,i)∇T t

i
Li(Θ

t
s, T t

in, T t
i ) · (UR,iUT

R,i)∇T t
i
Li(Θ

t
s, T t

in, T t
i ) (23)

The increase in multi-task loss caused by gradient conflicts in the null space (as described in Eq. (22)) cannot be reduced
since the shared token T t

in is not a learnable parameter. Instead, task-specific tokens T t
i can be added to mitigate the increase

in multi-task loss due to null space gradient conflicts by optimizing the learnable parameters {Ti}Ki=1 as described in Eq. (23).


