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Supplementary Material

A. Overview

Our supplementary material offers further insights into the
proposed method and provides in-depth discussions on top-
ics that were not extensively covered in the main paper:

• Implementation details (Sec. B).
• Details of our architecture (Sec. C).
• Deep analysis of our proposed framework (Sec. D).
• Model capacity (Sec. E).
• Additional qualitative results (Sec. F).

B. Implementation details

Training procedure. We employ a progressive learning
pipeline [15] with an initial batch size of 6 per GPU and
a patch size of 128 , using 4 NVIDIA RTX 3090 GPUs. We
use AdamW optimizer [6] and a cosine annealing sched-
ule [7]. Following a progressive training pipeline [15], the
patch size is adjusted to [128, 144, 216, 256, 288] at spe-
cific iteration milestones [150k, 280k, 370k, 424k, 472k],
respectively. The model is trained for 900,000 iterations,
beginning with an initial learning rate of 3e−4, which is pro-
gressively reduced to 1e−6 using a cosine annealing sched-
uler. These tensors serve as the initial states of the parame-
ters and are optimized during training to achieve the best
balance. For efficient training, we precompute the SVD
feature for each image by performing SVD operations in
advance. These precomputed SVD features are utilized
throughout the training process without gradient computa-
tion.

Attention blocks. The number of blocks at each stage
Lp∈{1,2,3,4} is set to {4, 4, 6, 8} blocks, divided into two
types: SGTB-C and SGTB-S. For instance, stage 1 contains
4 blocks, with 2 SGTB-C and 2 SGTB-S blocks. The refine-
ment block uses 4 transformer blocks from Restormer [15].
For in-group attention, α1 is initialized as a tensor of ones
with shape RC , and for cross-group attention, α2 is initial-
ized as a tensor of zeros with the same shape, where C
represents the channel dimension. The number of groups
gp at each stage is set to {1, 2, 4, 8} for SGTB-C and
{256, 64, 16, 4} for SGTB-S, where each value corresponds
to stages 1 through 4. In SGTB-C, groups increase with
channels, while in SGTB-S, they are scaled to maintain spa-
tial size as resolution drops. Channel size C is set to 36.

Objective function. The Pearson correlation [1] loss brings
the patch-level linear correlations by capturing the relative
luminance dynamics inherent in the ground-truth [11]. The

detailed correlation loss, Lcor, is following as,
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value and its standard deviation. The total objective func-
tion we used is as:

L = Lrec + βLcor, (3)

where β is 1.

C. Details of our architecture
In this section, we provide a detailed explanation of our
proposed architecture. First, we describe the Sobel oper-
ator and SVD filter, which perform spectral decomposition
on the input image. Next, we introduce the Sobel refine-
ment block and the SVD refinement block, which further
refine the extracted spectral features. Finally, we explain
the feature-grouped attention layer in detail, a key compo-
nent of the SGTB for effective attention processing.
Sobel operator and SVD filter. The Sobel operator [2]
computes vertical and horizontal gradients using two ker-
nels (Kx,Ky). By applying this operator, fine gradient
variations are highlighted, revealing high-frequency com-
ponents that capture degradation patterns and texture de-
tails. This process helps identify degradation characteristics
while providing valuable contextual information about the
overall image structure.

Kx =
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Before applying the Sobel operator, we use a 3 × 3 convo-
lution layer instead of the traditionally used Gaussian filter
to reduce noise and align the channel dimensions.

SVD filter [9, 10, 14] analyzes the distribution of low-
frequency information across pixels to identify degrada-
tion patterns. It decomposes an image into singular value
components, where larger singular values correspond to
dominant structures, while smaller values capture finer de-
tails. By detecting large-scale degradation, such as snow or
raindrops, SVD effectively highlights regions that obscure
broad areas without significant texture or fine details.



The detailed SVD filter operation is follows. At first, we
apply padding to the given degraded image ID with size w
and create a padded image Ipad, which allows the calcula-
tion near the edges. For each pixel location (i, j) in ID, a
corresponding block Bij of size (2w + 1) × (2w + 1) is
extracted from Ipad. The block Bij is defined as:

Bij = Ipad[i : i+ (2w + 1), j : j + (2w + 1)]. (5)

SVD is performed, resulting in a decomposition Bij =
UΣV T , where Σ = diag(s1, s2, . . . , sn) contains the sin-
gular values sk for the block. To calculate the degree for
each block, the sum of the top l singular values is divided
by the total sum of singular values in the block. This ratio,
defined as the degree, Di,j , is given by

Di,j =

∑l
k=1 sk∑n
k=1 sk

. (6)

After calculating the degree for all blocks, normalization is
applied to scale Di,j values between 0 and 1. The normal-
ized map value, i.e., the SVD feature, FSVD is obtained by

FSVD(i, j) =
Di,j −min(D)

max(D)−min(D)
. (7)

Sobel and SVD refinement block. The Sobel refinement
block consists of a convolution layer, a linear layer, and a
learnable parameter with the same size as the feature chan-
nels. The process referred to as feature reorganization in
the main paper involves passing the feature through a 3× 3
convolution layer, reshaping it, applying a linear layer, and
then performing a softmax operation along the channel di-
mension before multiplying it with the learnable parameter.
This process refines the Sobel feature based on local region
information.

The SVD refinement block consists of convolution lay-
ers, feature reorganization, a deformable convolution layer,
and a learnable parameter, which refine the low-frequency
components with ID. First, FSVD is interpolated to the size
of the main feature, Fp. The interpolated feature is then
concatenated with the feature extracted from the input im-
age and passed through a 3 × 3 convolution layer followed
by a deformable convolution layer. Afterward, similar to the
Sobel refinement block, the feature passes through a 3 × 3
convolution layer, is reshaped, undergoes a linear transfor-
mation, and is then multiplied by the learnable parameter.
This process enhances the SVD feature with the context of
the input image.
Feature-grouped attention in SGTB. We describe the in-
ternal structure of the feature-grouped attention layer, one
of the key components of SGTB. First, using the grouping-
mask Mp obtained from the mask generator (where p de-
notes the stage index), we perform grouping the interme-
diate feature. The grouped features are then processed

Table A. A toy experiment for window size of SVD filter.

Window Size PSNR SSIM
1 30.87 0.9235
3 31.14 0.9241
5 31.29 0.9258
7 31.13 0.9259
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Figure A. Visualization of outputs of various edge detectors.

through a projection layer to generate query, key, and value
representations. The projection layer consists of a 1 × 1
convolution layer followed by a 3 × 3 depth-wise convolu-
tion. Once the query, key, and value are obtained, as shown
in Eq. (5) of the main paper, both in-group attention and
cross-group attention are performed simultaneously. In the
case of SGTB-C, the attention results for the m-th group,
Am

in and Am
cross, have dimensions of C × C. In contrast, for

SGTB-S, Am
in and Am

cross have dimensions of HW
gp

× HW
gp

.
Finally, the separate attention results are merged and passed
through a 1×1 convolution layer to produce the final output.
Here, H and W are the spatial dimensions of the feature and
gp is the total number of groups in stage p.

D. Deep analysis of our proposed method
SVD window. In our approach, we applied an SVD filter to
patches of a specific size, using only the pixel values within
each patch. To determine the optimal patch size for this
filter, we conducted a simple toy experiment. In this experi-
ment, we kept all conditions consistent, including the torch
seed, except for varying the window size. Each case was
trained on a single GPU, and for validation, we evaluated
the model based on 100k iterations, using the raindrop met-
ric. The results in Tab. A showed that a window size of 5
yielded the highest PSNR, and the SSIM was second-best
with a difference of only 0.0001. Based on these findings,
we selected the window size, w, of 5 for the final model.
Options for edge detector. We experimented with various
edge detectors, including Sobel, Canny, and Laplacian of
Gaussian (LoG). Rather than relying solely on quantitative
metrics, we visually inspected the filtered outputs for prac-
tical effectiveness, as shown in Fig. A. While second-order
methods like LoG highlighted background edges, they often
missed fine weather-induced details. In contrast, first-order
methods such as Sobel were more robust under adverse con-
ditions, leading us to adopt Sobel.



Effect of group number. We conduct a toy experiment
to compare our proposed number of groups with two con-
stant group configurations: {4, 4, 4, 4} for SGTB-C and
{64, 64, 64, 64} for SGTB-S. To ensure fair comparison, we
adopt the same GPU and training configurations used in the
main experiments. We limit the training to 100k iterations,
as this setup is intended as a lightweight analysis. The re-
sults, shown in Tab. B, demonstrate that our method out-
performs both constant configurations in terms of accuracy.
Furthermore, our method achieves this while consuming the
least training memory among all compared settings.

Table B. Ablations with a single GPU, 100k trained.
Method Rainfog Snow Raindrop Avg

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Ours {1,2,4,8} / {256, 64, 16, 4} 26.95 0.884 28.63 0.878 31.24 0.925 28.94 0.896
{4,4,4,4} / {64, 64, 64, 64} 26.30 0.880 28.30 0.877 31.08 0.926 28.56 0.894
{1,2,4,8} / {64, 64, 64, 64} 26.55 0.880 28.10 0.877 30.93 0.923 28.53 0.893
{4,4,4,4} / {256, 64, 16, 4} 26.90 0.884 28.16 0.876 31.18 0.925 28.75 0.895

Grouping-mask visualization. For group-wise attention,
we generated a grouping-mask for spatial grouping. We
provide visual results to illustrate the information conveyed
by the mask. As shown in Fig. B, the mask groups areas
with similar characteristics. In the first row, the mask effec-
tively groups areas obscured or blurred by raindrops. The
stairs, blurred by water droplets, are not clearly visible in
the original image but are distinctly highlighted in the mask.
In the second row, the rain streak is clearly noticeable, and
the areas obscured by fog are well distinguished from the
sky. In the third row, the snowflake particles are effectively
separated from the background. We performed group-wise
attention, allowing the attention mechanism to focus on the
relevant regions for restoration.
No-reference perceptual metrics. To further demon-
strate the superior quality of the clean images produced
by our method, we additionally evaluate them using non-
reference image quality assessment metrics. We employed
MUSIQ [3] and CLIP-IQA+ [13], two widely used non-
reference metrics in recent studies. As shown in Tab. C, our
method achieves higher MUSIQ and CLIP-IQA+ scores,
further confirming perceptual gains.

E. Model capacity
To provide a comprehensive evaluation, we compare our
method with state-of-the-art models for adverse weather re-
moval, considering the efficiency and performance metrics.
The results are analyzed in terms of PSNR and SSIM to
highlight the effectiveness of our approach in Tab. D. As
shown in the table, our model achieves the best results while
maintaining a highly competitive model size and inference
time.

F. Additional qualitative results
We show additional qualitative comparisons to show-
case the effectiveness of our method on weather-degraded
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Figure B. Visualization of grouping-mask. The left column is the
input image, and the right column is the mask obtained from the
mask generator. From top to bottom, the results correspond to
raindrop, rain, and snow. The mask, divided into four groups, can
effectively group areas with similar features. The same group has
the same color.

Table C. Quantitative comparisons on the All-weather dataset with
non-reference metrics.

Method Rainfog Snow Raindrop Avg
MUSIQ IQA+ MUSIQ IQA+ MUSIQ IQA+ MUSIQ IQA+

Histo. [11] 70.16 0.6145 65.63 0.5894 70.66 0.6530 68.82 0.6190
Ours 70.46 0.6452 65.91 0.6171 71.85 0.6580 69.41 0.6401

Table D. Model size and performance. The inference time refers
to the processing time for a 256× 256 image.

TransWeather [12] WGWS [17]
PSNR 29.44 30.62
SSIM 0.901 0.920
Param. (M) 38.05 5.19
Inference time (s) 0.14 0.14

Histoformer [11] Ours
PSNR 32.43 32.63
SSIM 0.936 0.939
Param. (M) 16.61 16.65
Inference time (s) 0.72 0.86

datasets. Specifically, the samples for raindrop removal can
be found in Fig. C and D, rain removal in Fig. E and F, and
snow removal in Fig. G and H. These examples are sourced
from the RainDrop [8], Outdoor-Rain [4], and Snow100K-
L [5] datasets, respectively. Additionally, we trained our
model on the real-world WeatherStream dataset [16] and
evaluated its performance on rain, fog, and snow removal
within the same dataset, as shown Fig. J. Our method
demonstrates superior performance in restoring degraded



images closer to the ground truth compared to other meth-
ods. In particular, as illustrated in Fig. F, the restored image
effectively reproduces the color tone of the cropped region
from the original ground truth. Moreover, we provide ad-
ditional real world degradation images and their recovered
images. As shown in Fig. I, our method effectively removes
snow particles and restores the background in real snow en-
vironments, as our model does in synthetic scenarios.
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Figure C. Qualitative results of raindrop removal on RainDrop [8] dataset. Zoom for better view.
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Figure D. Qualitative results of raindrop removal on RainDrop [8] dataset. Zoom for better view.
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Figure E. Qualitative results of deraining on Outdoor-rain [4] dataset. Zoom for better view.
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Figure F. Qualitative results of deraining on Outdoor-rain [4] dataset. Zoom for better view.
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Figure G. Qualitative results of desnowing on Snow100K-L [5] dataset. Zoom for better view.
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Figure H. Qualitative results of desnowing on Snow100K-L [5] dataset. Zoom for better view.
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Figure I. Visual comparison of real-world snowfall, based on a model trained on the synthetic dataset and applied to real-world scenarios.
Zoom for better view.
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Figure J. Qualitative results for rain, fog, and snow removal on the real-world WeatherStream dataset [16]. Zoom for better view.
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