Synchronizing Task Behavior: Aligning Multiple Tasks during Test-Time Training

Supplementary Material

A. Additional Experimental Details

Experimental Settings. In the training phase within the
source domain, we utilize the Adam optimizer [3] with a
polynomial decay for the learning rate. We set the learning
rate to 2 x 1075 and the weight decay to 1 x 10~° for training
the networks. The batch size is 8, and we perform 60,000
iterations for training. We set \TP=\TB5=1, and reduce
ATBS 10 0.01 at the test time. During test time, we adopt the
SGD optimizer to ensure stable convergence with the TTT
loss. The learning rate remains the same. During test time,
we update the network for each batch of data for up to 40
steps in an online manner.

Table 1. Hyperparameters for experiments.

Hyperparameter Value
L Scheduler Polynomial Decay
L Minibatch size 8
L Backbone ResNet50 [2]
L Learning rate 0.00002
L Weight Decay 0.000001
Train Time Training
L Optimizer Adam [3]
L Number of iterations 60000
L Learning rate 0.00002
L Weight Decay 0.000001
Test Time Training
L Optimizer SGD
L Minibatch size 8
L Number of steps 40

Metrics. For semantic segmentation, we utilize the mean
Intersection over Union (mIoU) metric. The performance
of surface normal prediction was measured by calculating
the mean angle distances between the predicted output and
the ground truth. To evaluate depth estimation and edge
detection, we use the Root Mean Squared Error (RMSE).

Datasets. To implement TTT in semantic segmentation tasks
on different datasets (Taskonomy <> NYUD-v2, Taskon-
omy <> PASCAL-Context), we find shared class labels in
each of the two datasets. For Taskonomy <+ NYUD-v2,
we use 6 shared classes: table, tv, toilet, sofa,
potted plant, chair. For Taskonomy <+ PASCAL-
Context, we use 7 class labels: refrigerator, table,
toilet, sofa, bed, sink, chair. We use the

split of train/test following the common multi-task bench-
marks, NYUD-v2, PASCAL-Context and Taskonomy. In the
case of NYUD-v2, we utilize 795 images for training and
reserve 654 images for test-time training. With PASCAL-
Context, 4,998 images are employed during training, and
5,105 images are used for test-time training. For Taskonomy,
we leverage 295,521 images for training and apply 5,451
images during test-time.

B. Evaluation of Synchronization

We qualify the limitations of the existing TTT methods
on multi-task settings through three points: step variance
(SV) of peak step during adaptation, dynamic time warping
(DTW) and cosine similarity (CS) of adaptation graph. We
denote that the steps 7 € {1,2,..., T} and yfT) denotes the
performance of i-th task at step 7. n is the number of tasks.
Step Variance measures the dispersion of the steps where

tasks achieve their maximum performance:
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where 7; denotes the step with best performance for each

task ¢ and 7Pe0k = L5 Tipeak.
DTW aligns the performance trajectories Y; and Y; of the
different tasks by computing the optimal alignment path:
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where d represents a distance metric, with the Euclidean
distance used in our case, and C' denotes the binomial coeffi-
cient, representing the number of combinations.

Cosine Similarity evaluates the directional consistency of
performance changes between two tasks:
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coefficient.



C. Reliability of Assumptions

Reliability of Assumption 1. Assumption 1 posits that task
relations in the target domain can be reliably captured by
learning a domain-dependent transformation function f dur-
ing test-time training. To support this, we compute task affin-
ity matrices using the cosine similarity between task-specific
latents learned in the source domain. We compare these with
the affinity matrices obtained from the fine-tuned model on
the target domain, plotting the gap in Fig. 1, which shows
the domain shift from Taskonomy to NYUD-v2. While the
initial task relations differ across domains (Before Adapta-
tion), the learned transformation f effectively reduces the
affinity gap (After Adaptation), supporting the validity of the
assumption in real-world scenarios.

Before Adaptation After Adaptation

0.00 0.18 | 1 k| 00 0.00 0.07 0.03 0.05 050

0.00 0.06 0.06

S
o
N

0.00 0.04 0.01

0.06 0.00 ' 0.12

=)
o
@

0.04 0.00 0.07

=}
-
w

0.06 = 0.12 0.00 00s

=)
=}
a

0.01 0.07 0.00 00s

edge normals depth semseg
edge normals depth semseg

. ; . -000 g ; g
semseg depth normals edge semseg depth normals edge

Figure 1. Task affinity gap before and after adaptation.

Reliability of Assumption 2. Assumption 2 does not claim
that TBS achieves perfect predictions of task labels, but
rather that its predictions from masked latents z are com-
parable to those from unmasked latents z once sufficiently
trained. We evaluate this by directly measuring the TBS pre-
diction loss £75% under varying mask ratios. As shown in
Fig. 2, TBS maintains over 90% of its original performance
at r = 0 even when the mask ratio increases to r = 0.9,
supporting the validity of the assumption in practice. This
assumption is not directly comparable to those in image-
level restoration settings like MAE, as TBS predicts task
labels from masked latent features, rather than reconstruct-
ing pixel-level content.

Additionally, to quantify the level of distribution shift under
which our assumptions hold, we evaluate A by adding
Gaussian noise to input images, where the noise standard
deviation is set to « - Oimg (: noise scale), with ojpg being
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Figure 2. TBS prediction loss across varying masking ratios.

the standard deviation of input images. As shown in Tab. 2,
the results suggest that our method and proposition hold
robustly under moderate shifts.

Table 2. Arrr under Gaussian noise w.r.t. noise scale «

a [0 0.01 0.05 0.1 0.2 0.3 0.4
Appr T | 3489 3442 3380 3215 2864 2380 1973

D. Additional Experiments and Analyses

Comparison with Previous Methods in Different Sce-
narios. We compare S4T with previous state-of-the-art
TTT methods in different scenarios, using NYUD-v2 and
PASCAL-Context as the source domains and Taskonomy as
the target domain. The results are presented in Tab. 4. For a
fair comparison, we select the point at which each method
achieves its best TTT performance, averaged across all tasks,
as measured by Arpp. Since NYUD-v2 and PASCAL-
Context have smaller datasets, the overall TTT performance
is lower compared to scenarios where Taskonomy is used
as the source domain. The proposed S4T still demonstrates
comparable performance in these scenarios.

Evaluation of S4T Using Single Task for Adaptation. To
ensure that S4T’s gains are not solely due to multi-task struc-
tures, we evaluated it in a single-task setting where only one
task label is available during adaptation. In this case, TBS
uses a single latent vector per task. As shown in Tab. 5,
performance drops compared to the multi-task setup, high-
lighting the importance of modeling task relations. Still,
S4T achieves competitive results, confirming that its benefits
stem from the core TTT mechanism rather than architectural
scale or multi-head design.

Number of Parameters and Inference Time. As shown in
Table 6, we compare the number of parameters and inference
time from Taskonomy to NYUD-v2 for S4T, against previous
SOTA TTT methods. For inference, we use NVIDIA RTX
A6000 48GB with batch size 8.

Comparison with a Strong MTL+TTT Baseline. We com-
pare S4T with a strong TTT baseline that combines an ex-
isting TTT method (NC-TTT [9]) and a high-performing
multi-task learning MTL architecture (MTI-Net [10]). As
shown in Tab. 3, S4T achieves slightly higher adaptation
gain (Arrr = 34.9 vs. 32.5) while using fewer than 20% of
the parameters (29.2M vs. 165.0M) and maintaining compa-
rable inference time (0.3657s vs. 0.3208s). This indicates
that our method is not only effective in terms of performance
but also significantly more parameter-efficient. Importantly,
S4T is designed as a modular plug-in that can be ad-hoc
attached to existing MTL architectures.

Table 3. Comparison of S4T and NC-TTT + MTI-Net

Method Appp 1T Params (M) Inference Time (s)
NC-TTT + MTI-Net 32.5 165.0 0.3208
Ours 34.9 29.2 0.3657




Table 4. Comparison of multi-task performance from NYUD-v2 to Taskonomy across different tasks for S4T, against previous TTA and TTT

methods.

Dataset NYUD-v2 — Taskonomy PASCAL-Context — Taskonomy

Task Semseg Depth Normal Edge Arrr Semseg Normal Edge Arrr
Metric mloU 1 RMSE | mErr | RMSE | % T mloU 1 mErr | RMSE | % 1t
Base 48.21 +1.580e2  0.0507 +£2.000e-4  27.60 £1.200e-2  0.3058 +2.000e-4 | +0.00 | 50.94 +6.630e-1  31.27 +7.100e2  0.3032 +1.000e-4 | 0.00
TENT [11] 39.75 £1200e2  0.0634 +0.000e+0  37.49 +3.500e-1  0.3084 +5.000e-4 | -19.76 | 44.68 +3.530e-1  42.32 +1.830e-1  0.3269 +£2.100e-4 | -0.18
TIPI [6] 47.03 £7.080e-4  0.0514 +3550e-8  28.40 £1.490e-5  0.3052 +3320e-8 | -1.64 | 51.48 +1200e3  32.33 +4.180e-5  0.3031 +1.490e-7 | -0.77
TTT [9] 49.66 +4.120e-1  0.0523 £4.100e-3  31.96 £1.190e-1  0.3094 +6.000e-4 | -4.28 | 48.00 £2.661e+0 37.77 +2214e+0  0.3048 +3.600¢-4 | -9.00
TTT++ [4] 39.29 +1.08%-1  0.0595 +1.300e-3  36.53 +4.160e-1  0.3132 +2.610e-3 | -17.65 | 38.66 +3.090e-1  39.81 +3.850e-1  0.3050 +6.480e-4 | -17.33
TTTFlow [7] | 48.56 +3.000e-1  0.0540 +£1.000e-4  34.36 £1.425¢-1  0.3086 +£1.000e-4 | -7.73 51.55 £3.950e-1  34.60 £1200e-1  0.3042 +1.500e-3 | -3.26
ClusT3 [1] 51.14 £1.757e+0  0.0516 +3.700e-4  30.03 +4.310e-1  0.3065 +5.000e-4 | -1.16 49.67 +6.480e-1 3522 +1.570e-1  0.3019 +1.900e-4 | -4.90
ActMAD [5] | 55.04 £7.300e-4  0.0506 +5.800e-8  27.88 £7.000e-5  0.3081 +1.100e-9 | +3.17 | 51.79 +8030e-1  31.10 +£1.240e-1  0.3031 £1.020e-4 | +0.74
NC-TTT [8] 49.95 +6.530e-1  0.0516 +4.600e-5  29.95 +4200e2  0.3093 +1.010e-4 | -1.96 | 48.78 +5.100e-1  32.86 +2220e+0  0.3040 +1.300e-3 | -3.19
S4T (ours) 53.12 +1340e-1  0.0511 +1.930e-4  27.58 +1.044e-1  0.3089 +3.540e-5 | +2.13 | 53.18 +3.150e-1  31.50 +7.890e-2  0.3036 +£2.000e-4 | +1.18

Table 5. We compare the TTT performance of Taskonomy as the source domain and NYUD-v2 as the target domain across four tasks for
S4T, analyzing both single-task and multi-task scenarios.

Dataset NYUD-v2 — Taskonomy PASCAL-Context — Taskonomy

Task Semseg Depth Normal Edge ArrT Semseg Normal Edge Arrr
Metric mloU 1 RMSE | mErr | RMSE | % T mloU 1 mErr | RMSE | % T
Base 29.31 +6.300e2  1.179 £8.000e-3  61.32 +8.200e-1  0.1443 £7.100e-4 ~ +0.00 | 27.08 £1.400e2  63.46 +9.540e-1  0.1185 +7.100e-4 0.00
S4T (single) | 56.56 +8.500e2  1.065 +5.600e-3  47.32 +3.000e-2  0.1444 +£1.900e-5 - 43.28 +3.700e-1  46.91 £7500e-2  0.1185 +£9.600¢-6 -
S4T (multi) | 59.37 +1.520e-1  1.052 +7.500e-3  45.33 £7.200e-2  0.1441 +£5.100e-5  +34.94 | 45.42 +1.900e-1  41.41 +6300e-1  0.1183 +5.000e-5 | +34.20

Table 6. Comparisons of number of parameters and inference time from Taskonomy to NYUD-v2 for S4T, against previous TTT methods.

| TTT  TTT++ TTTFlow ClusT3 ActMad NC-TTT | S4T(Ours)
Number of Parameters | 27.49M  149.40M 49.56M 23.59M  23.55M 2391M 29.24M
Inference Time (s) 0.4016 2.7291 0.4355 0.2459 0.3041 0.1319 0.3657
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Figure 3. Ablation study on the masking ratio of S4T. We evaluate performance under the domain shift from Taskonomy to NYUD-v2.



E. Derivations of ??

For simplicity, denote the task-specific latent space as {z; ; }7~ ; and its masked version as {2, ; }1*_;.

d(0, p({z1,i}iz1,98,5)) — A0, p({Zi iy, yeg) (5)
=Ep ey [dlp(ye,1{ze1im1) po(ye,1{ 2 bim)]] (6)

— Epz i ldip(ye i {2t b ie1)s po(Ye, {2 Fima)]] (7
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The Eq. (11) follows from the triangle inequality.
Rearranging the above equation results in the following inequality.:

d(0,p({zt,i }i=1,yt,5)) < A0, p({Zei} i1, Ye.5)) (12)
+ Eptzeiy oo pldpo (e s {2t Hier ) po (Y, {2 Hima)]] (13)
+ Ep(tz iy, e 1dpWe iz Himr) s p(ue1{Zr i Him )] (14)
In the multi-task setting, we apply Eq. (14) to each task as follows:
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The inequality between Eq. (17) and Eq. (20) holds under Assumption ?? with a scaling factor C', which asserts that task
relations remain proportionally consistent between tasks and their masked counterparts. With a properly chosen masking ratio,
TBS effectively captures task relations in the source domain, as ensured by Assumption ??. Consequently, Eq. (20) approaches
zero, aligning with the training objective in the source domain. Therefore, the following inequality holds:

D d0:p({zei3 1, ve5) <D A0, p({Zi i1 9e5)) 21)
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