
Feed-Forward SceneDINO for Unsupervised Semantic Scene Completion

Supplementary Material

Aleksandar Jevtić* 1 Christoph Reich* 1,2,4,5 Felix Wimbauer 1,4

Oliver Hahn 2 Christian Rupprecht 3 Stefan Roth 2,5,6 Daniel Cremers 1,4,5

1TU Munich 2TU Darmstadt 3University of Oxford 4MCML 5ELIZA 6hessian.AI *equal contribution
https://visinf.github.io/scenedino

In this appendix, we provide further implementation
details, including dataset properties and an overview of
SceneDINO’s computational complexity (cf . Sec. A). We
discuss our multi-view feature consistency evaluation ap-
proach (cf . Sec. B). Next, we provide additional qualitative
and quantitative results (cf . Sec. C), including failure cases.
Finally, we discuss the limitations of SceneDINO and sug-
gest future research directions (cf . Sec. D).

A. Reproducibility

Here, we provide further implementation details, informa-
tion about the utilized dataset, and computational com-
plexity details to ensure reproducibility. Note that our
code is available at https://github.com/tum-vision/
scenedino.

A.1. Implementation details

We implement SceneDINO in PyTorch [123] and build on
the code of BTS [108], STEGO [33], and S4C [38]. Our
encoder-decoder (pre-trained DINO-B/8 and randomly ini-
tialized dense prediction decoder) produces per-pixel em-
beddings of dimensionality DE = 256. Based on these
embeddings, the two-layer MLP ω (hidden dimensionality
128) predicts 64 features. As rendering features is expen-
sive, requiring multiple forward passes through the MLP, ω
predicts 64 features. We employ another MLP to up-project
again to the full dimensionality D = 768; this MLP is
learned with SceneDINO and can up-project both 3D fea-
tures and 2D rendered features. We train for 100 k steps
with a base learning rate of 10→4, dropping to 10→5 after
50 k steps. We train using a batch size of 4, extracting
32 patches of size 8 → 8 per image. These patches align
with the per-patch DINO target features. For our feature
field loss formulation (cf . Sec. 3.2), we use the loss weights
εp = 1,εs = 0.001,εf = 0.2,εfs = 0.25.

The MLP head h (hidden dimensionality 768) produces
64 distilled features K. We perform distillation for 1000
steps with a learning rate of 5 ·10→4. We train using a batch
size of 4, 5 center points, a feature batch of size 576, and
cluster with C = 19. For kNN sampling, we use k = 4.
The feature buffer holds 256 feature batches. The loss term
in Eq. (9) is parameterized with εself = 0.08, εkNN = 0.43,

and εrand = 0.67. For the similarity thresholds, we use
bself = 0.44, bkNN = 0.18, and brand = 0.87.

We follow standard practice in 2D unsupervised seman-
tic segmentation [17, 31, 33, 51, 78, 92, 95] by applying
Hungarian matching [57] to align our pseudo semantics.
For SSC validation, we map down to 15 semantic classes
while following existing work [31, 33] for 2D validation
and map to 19 semantic classes.

A.2. Datasets

We provide additional details about the datasets utilized to
train and evaluate SceneDINO.
KITTI-360 [64, 66] provides video sequences from a mov-
ing vehicle equipped with a forward-facing stereo camera
pair and two side-facing fisheye cameras. In future frames,
the fisheye views capture additional geometric and seman-
tic cues of regions occluded in the forward-facing view. For
training, we resample the fisheye images into perspective
projection. We focus on an area approximately 50 meters
ahead of the ego vehicle. Assuming an average velocity
of 30 ↑ 50 km/h, side views are randomly sampled 1 – 4
seconds into the future. Given a frame rate of 10Hz, this
translates to 10 – 40 time steps. Each training sample con-
sists of eight images: four forward-facing views (including
the input image) and four side-facing views.

To evaluate our predicted field in SSCBench-KITTI-
360, we follow the evaluation procedure of S4C [38]. The
voxel predictions are evaluated in three different ranges:
12.8m→ 12.8m→ 6.4m, 25.6m→ 25.6m→ 6.4m, and the
full range 51.2m → 51.2m → 6.4m. For each voxel, multi-
ple evenly distributed points are sampled from the semantic
field. The predictions are aggregated per voxel by taking
the maximum occupancy and weighting the class predic-
tions accordingly.
Cityscapes [19] consists of 500 high-resolution and densely
annotated validation images of ego-centric driving scenes.
For validation, Cityscapes uses a 19-class taxonomy. We
leverage the Cityscapes validation samples at a resolution
of 640 → 192 for our domain generalization experiments
(2D semantic segmentation).
BDD-100K [115] is a driving scene dataset obtained from
urban areas in the US. BDD-100K contains 1000 semantic

https://visinf.github.io/scenedino
https://github.com/tum-vision/scenedino
https://github.com/tum-vision/scenedino


Input Image
SceneDINO (Ours) S4C + STEGO

Ground Truth

Feature Field SSC Prediction SSC Prediction

Road Sidewalk Building Fence Pole Other Object Traffic Sign Vegetation Terrain Person Car Other Vehicle Motorcycle Bicycle

Figure 6. 3D qualitative SSC comparison on KITTI-360. We provide additional qualitative results, visualizing the input image,
SceneDINO’s predicted feature field using the first three principal components, and SSC prediction, the SSC prediction of our base-
line S4C+STEGO, and the SSC ground truth. We only visualize surface voxels within the field of view for the sake of clarity.

segmentation validation images. The semantic taxonomy
follows the 19-class Cityscapes definition. For domain gen-
eralization experiments, we utilize BDD-100K images at a
resolution of 640→ 192.

RealEstate10K [119] is a large-scale dataset containing
videos of real-world indoor and outdoor scenes, primar-
ily sourced from YouTube. For our experiments, we train
with a resolution of 512 → 288. Each training sample con-
sists of three frames, separated by a randomly sampled time
offset. There are no semantic annotations provided with
the dataset. We evaluate the multi-view consistency of our
model in this setting.

A.3. Computational complexity

SceneDINO requires only a single GPU for training and in-
ference. In SSCBench (51.2 m range), SceneDINO requires
0.76±0.1 s to infer a full scene on a V100 GPU. The peak
VRAM usage during inference is 11 GB. For reference,
S4C requires 0.32±0.13 s. Considering our expressive and
high-dimensional feature field and ViT encoder, this is a
moderate runtime increase. SceneDINO has 100 M param-
eters and is trained for approximately 2 days on a single

V100 32 GB GPU. All results are reported using automatic
mixed precision.

B. Multi-View Feature Consistency Evaluation

We aim to assess the multi-view consistency of 2D and 3D
features in Tab. 4. Note, we are not aware of any stan-
dardized approach for evaluating multi-view feature consis-
tency. To this end, we employ a straightforward approach.
Given two video frames with a temporal stride of 3, for-
ward optical flow is computed using RAFT large [99]. We
estimate occlusion by forward-backward consistency [125];
for this, we also compute backward optical flow. 2D feature
maps obtained using the second frame are backward warped
to the 2D features of the first frame. We compute different
similarity metrics between the aligned features (L1, L2, and
cos-sim), ignoring occlusions. While features from DINO,
DINOv2, and FiT3D possess a lower resolution than our 2D
rendered SceneDINO features, we upscale these features to
the image resolution before warping. This evaluation ap-
proach utilizes optical flow correspondences and captures
both ego motion as well as object motion, offering a simple
way to evaluate multi-view feature consistency.

C. Additional Results

Here we provide additional qualitative and quantitative re-
sults, extending our results reported in the main paper.
Qualitative results. In Fig. 6, we present additional qual-
itative results of SceneDINO using our 3D feature distilla-



Input Image
SceneDINO (Ours)

Ground Truth

Feature Field SSC Prediction

Road Sidewalk Building Fence Pole Other Object Traffic Sign Vegetation Terrain Person Car Other Vehicle Motorcycle Bicycle

Figure 7. Failure cases of SceneDINO on KITTI-360. We provide failure cases of SceneDINO. We visualize the input image, the
predicted feature field using the first three principal components, the SSC prediction, and the SSC ground truth. We observe that our
semantic predictions struggle in shaded regions. We only visualize surface voxels within the field of view for the sake of clarity.

Input Image SceneDINO DINO

Figure 8. 2D SceneDINO features on KITTI-360. We visual-
ize our 2D rendered features and DINO features for a given input
image (left). We use the first three principal components for fea-
ture visualization. Notably, SceneDINO’s features (middle) are
smoother and capture finer structures than DINO (right). Addi-
tionally, SceneDINO’s features are high-resolution, while DINO
generates features with a stride of 8.

tion approach on unsupervised semantic scene completion.
We also provide visualizations of our unsupervised SSC
baseline, S4C + STEGO. Qualitatively, our approach ob-
tains more accurate SSC results and is able to segment far-
away objects, such as cars, better than the S4C + STEGO
baseline. This observation aligns with the quantitative re-
sults presented in Tab. 1 of the main paper.

Figure 8 qualitatively analyzes our 2D rendered fea-

tures against DINO. Our features exhibit a smooth appear-
ance for uniform regions, such as sidewalks. Addition-
ally, SceneDINO’s features better capture fine structures
like poles than DINO features. 2D rendered SceneDINO
features are also high resolution in contrast to DINO fea-
tures that exhibit a lower resolution.

Failure cases. In Fig. 7, we provide failure cases of
SceneDINO’s SSC predictions. Our predictions exhibit two
common failure cases. First, shadowed regions often lead
to wrong semantic predictions. Regions affected by signifi-
cant brightness changes are breaking the brightness consis-
tency, subsequently offering a poor learning signal during
training, thus impeding accurate predictions of shadowed
regions. Second, objects such as cars can entail tail-like ar-
tifacts, not accurately capturing the geometry. As our multi-
view image and feature reconstruction training cannot han-
dle dynamic objects, tail-like artifacts could be caused by
the poor learning signal for dynamic objects.

Quantitative results. In Tab. 8, we provide additional
semantic scene completion results of 3D-supervised ap-
proaches as an additional point of comparison. In particu-
lar, we report official SSCBench [64] results of VoxFormer-
S [63] and OccFormer [118]. Both utilize 3D supervision,
including both semantic and geometric annotations. We
also report the results of SSCNet [96]. This approach trains
using 3D supervision but utilizes a depth image during in-
ference. While SceneDINO achieves state-of-the-art seg-
mentation accuracy in the unsupervised setting, supervised
approaches are significantly more accurate.



Table 8. SSCBench-KITTI-360 results. Semantic results using mIoU and per class IoU, and geometric results using IoU, Precision,
and Recall (all in %, →) on SSCBench-KITTI-360 test using three depth ranges. We extend Tab. 1 and compare SceneDINO against our
baseline S4C [38] + STEGO [33], 2D-supervised S4C [38], and three 3D-supervised approaches (VoxFormer-S [63], OccFormer [118],
and SSCNet [96]). Note that SSCNet uses depth as an additional input during inference, while all other approaches use a single input
image.

Method S4C + STEGO SceneDINO (Ours) S4C VoxFormer-S OccFormer SSCNet

Supervision Unsupervised 2D supervision 3D supervision 3D sup. + depth input

Range 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m
Semantic validation

mIoU 10.53 9.26 6.60 10.76 10.01 8.00 16.94 13.94 10.19 18.17 15.40 11.91 23.04 18.38 13.81 26.64 24.33 19.23
car 18.57 14.09 9.22 21.24 15.94 11.21 22.58 18.64 11.49 29.41 25.08 17.84 40.87 33.10 22.58 52.72 45.93 31.89
bicycle 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 2.73 1.73 1.16 1.94 1.04 0.66 0.00 0.00 0.00
motorcycle 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.97 1.47 0.89 1.03 0.43 0.26 1.41 0.41 0.19
truck 0.11 0.04 0.02 0.00 0.00 0.00 7.51 4.37 2.12 6.08 6.63 4.56 22.40 15.21 9.89 16.91 14.91 10.78
other-v. 0.01 0.05 0.02 0.00 0.00 0.00 0.00 0.01 0.06 3.71 3.56 2.06 8.48 6.12 3.82 1.45 1.00 0.60
person 0.01 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 2.06 2.20 1.63 4.54 3.79 2.77 0.36 0.16 0.09
road 61.97 52.47 38.15 51.10 49.12 39.82 69.38 61.46 48.23 66.10 58.58 47.01 73.34 66.53 54.30 87.81 85.42 73.82
sidewalk 18.74 20.95 18.21 20.26 22.31 18.97 45.03 37.12 28.45 38.00 33.63 27.20 49.76 41.30 31.53 67.19 60.34 46.96
building 14.75 24.44 17.81 12.33 18.27 14.32 26.34 28.48 21.36 41.12 38.24 31.18 53.65 44.86 36.42 53.93 54.55 44.67
fence 1.41 0.20 0.11 1.91 0.90 0.58 9.70 6.37 3.64 8.99 7.43 4.97 10.64 7.85 4.80 14.39 10.73 6.42
vegetation 15.83 16.58 11.30 31.22 25.57 19.85 35.78 28.04 21.43 45.68 35.16 28.99 49.91 37.96 31.00 56.66 51.77 43.30
terrain 26.49 9.95 4.17 23.26 18.02 15.22 35.03 22.88 15.08 24.70 18.53 14.69 34.63 24.99 19.51 43.47 36.44 27.83
pole 0.08 0.04 0.04 0.05 0.05 0.05 1.23 0.94 0.65 8.84 8.16 6.51 12.93 10.25 7.77 1.03 1.05 0.62
traffic-sign 0.00 0.00 0.00 0.00 0.00 0.00 1.57 0.83 0.36 9.15 9.02 6.92 14.25 12.37 8.51 1.01 1.22 0.70
other-obj. 0.05 0.04 0.02 0.00 0.00 0.00 0.00 0.00 0.00 4.40 3.27 2.43 8.96 6.71 4.60 1.20 0.97 0.58

Geometric validation

IoU 49.32 41.08 36.39 49.54 42.27 37.60 54.64 45.57 39.35 55.45 46.36 38.76 58.71 47.96 40.27 74.93 66.36 55.81
Precision 54.04 46.23 41.91 53.27 46.10 41.59 59.75 50.34 43.59 66.10 61.34 58.52 69.47 62.68 59.70 83.65 77.85 75.41
Recall 84.95 78.69 73.43 87.61 83.59 79.67 86.47 82.79 80.16 77.48 65.48 53.44 79.13 67.12 55.31 87.79 81.80 68.22

Table 9. SSCBench-KITTI-360 results (DINOv2). Semantic re-
sults using mIoU and per class IoU, and geometric results using
IoU, Precision, and Recall (all in %, →) on SSCBench-KITTI-360
test using three depth ranges. We compare our baseline S4C +
STEGO to SceneDINO, both using DINOv2 features.

Method S4C + STEGO w/ DINOv2 SceneDINO w/ DINOv2 (Ours)

Supervision Unsupervised

Range 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m
Semantic validation

mIoU 11.70 9.27 6.25 13.76 11.78 9.08

car 15.66 10.31 5.84 18.27 13.83 9.51
bicycle 0.00 0.00 0.00 0.00 0.00 0.00
motorcycle 0.00 0.00 0.00 0.00 0.00 0.00
truck 0.00 0.00 0.00 0.00 0.00 0.00
other-v. 0.01 0.01 0.01 0.00 0.00 0.00
person 0.00 0.00 0.00 0.00 0.00 0.00
road 65.81 55.73 35.00 68.04 61.35 46.70
sidewalk 31.78 24.13 19.43 41.63 36.02 27.32
building 0.83 0.41 0.23 15.97 20.87 16.81
fence 0.89 0.57 0.41 0.00 0.00 0.00
vegetation 9.92 11.42 9.24 25.37 17.86 14.82
terrain 33.79 15.96 8.45 37.07 26.81 21.06
pole 16.84 20.43 15.14 0.00 0.00 0.00
traffic-sign 0.00 0.00 0.01 0.00 0.00 0.00
other-obj. 0.01 0.01 0.02 0.00 0.00 0.00

Geometric validation

IoU 47.51 39.99 35.63 48.12 40.35 36.21

Precision 55.89 47.32 42.36 52.95 45.44 40.92
Recall 76.02 72.06 69.14 84.07 78.29 75.89

Tab. 8 provides additional SSC results of our S4C [38] +
STEGO [33] baseline and SceneDINO using DINOv2 fea-
tures [80]. In particular, we train STEGO with DINOv2
features and lift the resulting unsupervised semantic predic-
tions using S4C. For SceneDINO, we use DINOv2 target
features and perform distillation and clustering. Training
S4C + STEGO using DINOv2 features leads to improve-

Table 10. Class-wise 2D unsupervised semantic segmentation

results on KITTI-360. We compare the class-wise IoU scores (all
in %, →) of SceneDINO against STEGO in 2D on the SSCBench-
KITTI-360 test split.

Method STEGO SceneDINO

mIoU 23.57 25.81

road 63.81 77.73
sidewalk 7.70 44.48
building 65.24 77.67
wall 11.94 3.68
fence 15.36 18.13
pole 11.43 0.93
traffic light 0.00 0.00
traffic sign 0.11 0.00
vegetation 73.35 73.38
terrain 49.31 41.29
sky 69.18 71.72
person 0.00 0.00
rider 0.05 0.00
car 77.72 81.31
truck 2.09 0.04
bus 0.02 0.00
train 0.00 0.00
motorcycle 0.08 0.00
bicycle 0.00 0.00

ments for close range (12.8 m) over using DINO features
(cf . Tab. 8). For larger ranges (e.g., 51.2 m), S4C + STEGO
with DINOv2 features drops in accuracy compared to S4C
+ STEGO with DINO features. We attribute this drop in ac-
curacy to the coarser feature resolution of DINOv2 (larger
ViT patch size). This behavior has also been observed for
the task of 2D unsupervised semantic segmentation [31].
Note that SceneDINO overcomes the coarse features using
a learnable downsampler and multi-view training, learning
high-resolution 3D features.

Class-wise semantic results. To further assess the seg-



ro
a

d

s
id

e
w

a
lk

b
u

il
d

in
g

w
a

ll

fe
n

c
e

p
o

le

tr
a

ffi
c

li
g

h
t

tr
a

ffi
c

s
ig

n

v
e

g
e

ta
ti
o

n

te
rr

a
in

s
k
y

p
e

rs
o

n

ri
d

e
r

c
a

r

tr
u

c
k

b
u

s

tr
a

in

m
o

to
rc

y
c
le

b
ic

y
c
le

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle
0

0.2

0.4

0.6

0.8

1

(a) SceneDINO

ro
a

d

s
id

e
w

a
lk

b
u

il
d

in
g

w
a

ll

fe
n

c
e

p
o

le

tr
a

ffi
c

li
g

h
t

tr
a

ffi
c

s
ig

n

v
e

g
e

ta
ti
o

n

te
rr

a
in

s
k
y

p
e

rs
o

n

ri
d

e
r

c
a

r

tr
u

c
k

b
u

s

tr
a

in

m
o

to
rc

y
c
le

b
ic

y
c
le

road

sidewalk

building

wall

fence

pole

traffic light

traffic sign

vegetation

terrain

sky

person

rider

car

truck

bus

train

motorcycle

bicycle
0

0.2

0.4

0.6

0.8

1

(b) STEGO

Figure 9. Confusion matrices for 2D unsupervised semantic

segmentation on KITTI-360. Rows represent ground-truth class
labels (normalized to 1), while columns correspond to predicted
class labels. We report results for (a) SceneDINO and (b) STEGO
on the SSCBench-KITTI-360 test split.

mentation accuracy of SceneDINO, we report the class-
wise IoU metric in 3D (cf . Tab. 1, 8, and 9) and 2D (cf .
Tab. 10). We generally observe that SceneDINO performs
well in segmenting frequent classes, such as “road”, “build-
ing”, and “sky”. Less frequent classes, such as “fence”
and “pole”, are less well segmented. Classes including
very small and fine structures (e.g., “pole”) are completely
missed by SceneDINO. This trend can also be observed
for our 3D unsupervised baseline S4C + STEGO and 2D

Table 11. Linear probing results on SSCBench-KITTI-360.

We extend Tab. 7 and report detailed results of SceneDINO using
2D-supervised linear probing. Semantic results using mIoU and
class IoU, and geometric results using IoU, Precision, and Recall,
and (all in %, →) on SSCBench-KITTI-360 test using three depth
ranges.

Method SceneDINO w/ DINO (Ours) SceneDINO w/ DINOv2 (Ours)

Supervision Unsupervised

Range 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m
Semantic validation

mIoU 13.63 12.07 9.34 15.85 13.70 10.57

car 16.77 12.37 8.42 20.35 15.04 10.16
bicycle 1.10 0.70 0.47 0.00 0.00 0.00
motorcycle 0.00 0.00 0.00 0.00 0.00 0.00
truck 3.80 2.21 1.52 11.48 7.46 4.63
other-v. 0.13 0.08 0.06 0.00 0.00 0.00
person 0.01 0.00 0.00 0.00 0.00 0.00
road 66.63 62.21 49.99 69.92 63.06 50.49
sidewalk 29.46 25.17 18.85 42.35 37.13 29.13
building 18.64 22.82 17.66 23.03 27.05 21.40
fence 9.29 6.03 3.96 8.82 6.40 4.61
vegetation 32.76 26.49 20.89 30.42 24.96 19.75
terrain 24.80 22.43 18.00 30.73 23.85 17.93
pole 0.25 0.24 0.14 0.46 0.40 0.28
traffic-sign 0.50 0.17 0.09 0.00 0.00 0.00
other-obj. 0.26 0.07 0.04 0.00 0.00 0.00

Geometric validation

IoU 49.34 42.26 37.61 49.77 43.19 38.55

Precision 52.83 45.95 41.55 52.76 46.46 42.11
Recall 88.21 84.05 79.88 89.76 85.99 82.02

STEGO. We also observe that class-wise metrics strongly
correlate between 2D and 3D.

Figure 9 reports confusion matrices of SceneDINO and
STEGO for 2D semantic segmentation on KITTI-360. Both
approaches share a similar confusion pattern. We attribute
this to the fact that both approaches rely on the feature rep-
resentation of DINO. In particular, we observe confusion
between semantically close classes, such as “pole”, “traf-
fic light”, and “traffic sign”. Interestingly, for the semantic
classes “person”, “rider”, “car”, “truck”, “bus”, “motorcy-
cle”, and “bicycle”, we see a strong confusion. We suspect
this correlation is potentially caused by the fact that these
classes often appear on the “road” and “sidewalk” and are
rare in KITTI-360.

We also provide class-wise SSC results of SceneDINO
using 2D-supervised linear probing in Tab. 11. Linear prob-
ing provides an upper bound for clustering our features, im-
proving the segmentation accuracy for almost all classes.
However, rare classes like “motorcycle” are still not cap-
tured using linear probing. This suggests that the DINO
feature space fails to express these classes accurately, lim-
iting the segmentation accuracy of SceneDINO. Still, our
approach is agnostic to the utilized target features and can
potentially profit from better 2D features.

Camera pose analysis. Training SceneDINO requires
accurate camera poses. While KITTI-360 offers ground-
truth camera poses, these poses are obtained using addi-
tional cues, including LiDAR data [66]. To adhere to
our fully unsupervised setting, we provide results train-



Table 12. Camera pose analysis on SSCBench-KITTI-360. We
extend the camera pose analysis in Tab. 5 and report detailed re-
sults of SceneDINO with unsupervised camera poses estimated
by SOFT2 [122] and ORB-SLAM3 [7]. For reference, we also
provide results obtained using the KITTI-360 ground-truth poses.
Semantic results using mIoU and class IoU, and geometric results
using IoU, Precision, and Recall, and (all in %, →) on SSCBench-
KITTI-360 test using three depth ranges.

Method SceneDINO (Ours)

Poses SOFT2 ORB-SLAM3 KITTI-360 (GT)

Range 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m 12.8 m 25.6 m 51.2 m
Semantic validation

mIoU 10.58 9.58 7.72 10.88 9.86 7.88 10.76 10.01 8.00

car 18.47 13.98 10.44 19.37 14.09 9.72 21.24 15.94 11.21
bicycle 0.04 0.03 0.03 0.06 0.03 0.02 0.00 0.00 0.00
motorcycle 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00
truck 0.00 0.00 0.00 0.05 0.02 0.01 0.00 0.00 0.00
other-v. 0.01 0.02 0.04 0.08 0.06 0.05 0.00 0.00 0.00
person 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
road 44.48 44.50 36.06 44.74 40.58 31.86 51.10 49.12 39.82
sidewalk 16.55 16.79 14.38 21.45 23.56 19.88 20.26 22.31 18.97
building 19.40 23.40 18.56 19.19 24.87 20.02 12.33 18.27 14.32
fence 1.79 1.00 0.68 1.62 1.21 0.91 1.91 0.90 0.58
vegetation 32.10 25.65 20.67 32.60 24.91 19.49 31.22 25.57 19.85
terrain 25.59 18.11 14.79 23.98 18.41 16.16 23.26 18.02 15.22
pole 0.18 0.11 0.09 0.00 0.00 0.00 0.05 0.05 0.05
traffic-sign 0.00 0.01 0.00 0.03 0.03 0.02 0.00 0.00 0.00
other-obj. 0.08 0.05 0.03 0.08 0.05 0.03 0.00 0.00 0.00

Geometric validation

IoU 49.91 41.85 37.25 45.42 40.21 36.65 49.54 42.27 37.60

Precision 54.74 45.66 40.79 54.42 45.54 40.98 53.27 46.10 41.59
Recall 84.98 83.40 81.12 73.33 77.46 77.62 87.61 83.59 79.67

ing with unsupervised camera poses, estimated using stereo
visual SLAM. In particular, Tab. 5 reports results of
SceneDINO trained using unsupervised camera poses es-
timated by ORB-SLAM3 [7]. Table 12 extends this and re-
ports detailed SSC results using two different unsupervised
stereo visual SLAM approaches—SOFT2 [122] and ORB-
SLAM3 [7]. Using unsupervised and visually estimated
poses leads to a minor drop in both semantic and geometric
SSC validation. While ORB-SLAM3 poses lead to slightly
better semantic accuracy than SOFT2 poses, SOFT2 esti-
mated poses result in higher geometric accuracy. Still, both
SOFT2 and ORB-SLAM3 provide poses accurate enough
for training SceneDINO, reaching a similar accuracy to em-
ploying KITTI-360 ground-truth poses.
Out-of-domain results. We illustrate results for out-of-
domain prediction in Fig. 10. While our SceneDINO model
is trained on the KITTI-360 dataset, we still obtain plausi-
ble features when inferring 2D features for vastly different
scenes. The 2D rendered features still show a strong cor-
relation with semantically uniform regions, showcasing the
generalization of our feature field.

D. Limitations and Future Work

Target features. Our method builds on DINO [11] to ob-
tain target features. While we learn to lift these features into
3D and improve multi-view feature consistency, we can-
not improve the discriminative power of the target features

Input Image SceneDINO

Figure 10. 2D SceneDINO features on out-of-domain images.

We visualize our 2D rendered features (right) given an out-of-
domain image (left) from ADE20K [127]. We use the first three
principal components for feature visualization. While not trained
on such scenes, SceneDINO still produces plausible feature maps.

per se. However, SceneDINO can be trained using arbi-
trary 2D target features and can profit from future advances
in SSL representations. Note that training SceneDINO re-
quires only 2 days on a single GPU and our training trans-
fers seamlessly to different target features (e.g., DINOv2),
thus, utilizing SceneDINO differently is straightforward.
Dynamic objects. Our loss does not model dynamic ob-
jects and relies on a static scene assumption. This can po-
tentially cause inaccurate predictions for dynamic classes
such as person in our experiments. Recent works in depth
estimation have explicitly modeled the probability of ar-
eas being dynamic [126] and even their motion within the
scene [124], which might be extended to SceneDINO.
View sampling and camera poses. For sampling views
during training, we rely on the sampling scheme of
S4C [38]. This is not directly applicable to other non-
driving datasets, where the sampling needs to be tuned. In
addition, our approach requires accurate camera poses for
each view. We demonstrated that these can be obtained in
an unsupervised way for KITTI-360 (cf . Tab. 5 & Tab. 12).
However, obtaining unsupervised camera poses in more
complex scenarios and conditions is still a challenge [121].
Future work. SceneDINO is only trained using a sin-
gle dataset to be comparable to existing SSC approaches.
However, scaling our approach to multiple datasets of more
variable scenes could lead to more general feature repre-
sentations. Ultimately, scaling SceneDINO to internet-scale
videos might enable strong zero-shot and cross-domain 3D
scene understanding.

References

[121] Lucas R. Agostinho, Nuno M. Ricardo, Maria I. Pereira,
Pinto Antoine, and Andry M. Pinto. A practical survey
on visual odometry for autonomous driving in challenging



scenarios and conditions. IEEE Access, 10:72182-72205,
2022. vi

[122] Igor Cvi!ić, Ivan Marković, and Ivan Petrović. SOFT2:
Stereo visual odometry for road vehicles based on a point-
to-epipolar-line metric. IEEE Trans. Robot., 39(1):273-288,
2023. vi

[123] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Köpf, Edward Z. Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
Torch: An imperative style, high-performance deep learn-
ing library. In NeurIPS*2019, pages 8024–8035. i

[124] Yihong Sun and Bharath Hariharan. Dynamo-Depth: Fix-
ing unsupervised depth estimation for dynamical scenes. In
NeurIPS*2023, pages 54987–55005. vi

[125] Narayanan Sundaram, Thomas Brox, and Kurt Keutzer.
Dense point trajectories by GPU-accelerated large displace-
ment optical flow. In ECCV, pages 438—451, 2010. ii

[126] Sungmin Woo, Wonjoon Lee, Woo Woo Jin, Dogyoon Lee,
and Sangyoun Lee. ProDepth: Boosting self-supervised
multi-frame monocular depth with probabilistic fusion. In
ECCV, pages 201–217, 2024. vi

[127] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ADE20K dataset. In CVPR, pages 5122–5130, 2017. vi


	Introduction
	Related Work
	Unsupervised Semantic Scene Completion
	SceneDINO
	3D feature field training
	3D feature distillation for unsupervised SSC 

	Experiments
	3D semantic scene completion
	2D semantic segmentation
	Multi-view feature consistency
	Analyzing SceneDINO


	Conclusion
	Reproducibility
	Implementation details
	Datasets
	Computational complexity

	Multi-View Feature Consistency Evaluation
	Additional Results 
	Limitations and Future Work 


