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A. Theoretical framework

In this section, we give the proof of our Proposition 4.1.

Proof. By the properties of 2-norm condition number
κ(AB) ≤ κ(A) · κ(B), then we can rewrite left sides of
Eq.(5) as follows:
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TXWV) ≤ κ(XWQ)·κ(XWK)·κ(XWV).
(10)

By definition we have:

κ(XWQ) ≤ κ(X) · κ(WQ). (11)

Since WQ does not depend on data X, we denote κ(WQ) =
CQ. Then we have

κ(XWQ) ≤ CQ · κ(X). (12)

Similarly, this holds for κ(XWK) and κ(XWV) as well.
Since all weight matrices stem from a zero mean i.i.d. with
high statistical likelihood C = CQ · CK · CV will tend
towards unity. This completes the proof.

Next, we give the proof of our Proposition 4.2

Proof. By the properties of 2-norm condition number
κ(AB) ≤ κ(A) · κ(B), then we can rewrite left sides of
Eq.(7) as follows:

κ(XM+X) (13)
=κ(X(M+ I)) (14)
≤κ(X) · κ(M+ I). (15)

Then we take the notation C = CQ · CK · CV and we have
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Where C = CQ ·CK ·CV σmax and σmin represents maximal
and minimal singular value of X. Then we have

κ(X) · κ(M) ≤ C · σ3
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κ(X) · κ(M+ I) ≤ C · σ3
max + σmax
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(19)

For a matrix X ∈ Rn×d whose entries are i.i.d with mean
zero, it holds with high probability σmin < 1 and σmax > 1.
Then we have

C · σ3
max + σmax ≈ C · σ3

max (20)
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min + σmin > σ3

min (21)

Therefore, κ(X) · κ(M+ I)≪ κ(X) · κ(M)
This completes our proof for Proposition 4.2.

B. ConvMixer
In this section, we demonstrate how removing skip connec-
tions in Convolutional Neural Networks (CNNs) impacts
performance. ConvMixer, an extremely simple model in-
spired by Vision Transformers (ViTs), was introduced in
[28] and remains widely used within the research commu-
nity. ConvMixer consists of LL ConvMixer blocks, for-
mally defined as follows:

X
′

l = BN(σ{ConvDepthwise(Xl)}+Xl (22)

Xl+1 = BN(σ{ConvPointwise(X
′

l)} (23)

where X ∈ Rh×n/p×n/p, BN is batch normalization, and
σ is activation function. h is feature dimension, n is image
height and width and p is patch size.

For the ConvDepthwise transformation, we analyze the
condition number in the linear case and in the absence of
batch normalization. We have:

κ(WCDXl) ≤ κ(WCD) · κ(Xl) ≤ CCD · κ(Xl) (24)

Since WCD does not depend on data, we denote κ(WCD) =
CCD. Compared to the Self-Attention Mechanism, the Con-
vDepthwise transformation demonstrates better condition-
ing with a lower bound on condition numbers.



Figure 6. Top-1 Accuracy using the ConvMixer-Tiny model on
three different datasets with and without skip connections.

In Fig. 6, we demonstrate that the performance of the
ConvMixer Tiny model does not degrade when skip connec-
tions are removed. This observation contrasts with Vision
Transformers (ViTs), where the absence of skip connections
in the self-attention mechanism leads to a noticeable perfor-
mance drop.

C. Empirical Neural Tangent Kernel

The Neural Tangent Kernel (NTK) describes the evolution
of deep neural networks during training by gradient de-
scent. In this paper, we propose to measure the condition
of the self-attention output embeddings as a proxy for its
Jacobian condition, since analyzing the transformer model
NTK is computationally expensive and unrealistic. How-

Figure 7. Spectrum of Jacobian of one SAB using SVDTG. Lower
ϵ represents to better input token condition.

Figure 8. Spectrum of Jacobian of one SAB using DCTTG. Lower
ϵ represents better input token condition.

ever, in Fig. 7 and Fig. 8, we empirically demonstrate the
Jacobian of the self-attention mechanism using SVDTG and
DCTTG. Intrinsically, the self-attention exhibits a dispro-
portionately ill-conditioned spectrum, and using our TG
methods, we observe an improvement in this regard.


