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1. Search Space Description
In this section, we will present detailed information about

the five NAS search spaces used in the experiments.

• NAS-Bench-101 [25] is an operation-on-node (OON)

search space where node denotes the operation and edge

denotes the connection. It is a cell-based search space

that is composed of over 423k architectures. Each archi-

tecture cell includes at most seven nodes and nine edges.

The search space provides the accuracy of architectures

on the CIFAR-10 dataset.

• NAS-Bench-201 [5] is an operation-on-edge (OOE) and

cell-based search space which contains 15625 architec-

tures. Unlike OON search spaces, the operation type

is represented by edges on NAS-Bench-201. There ex-

ist four nodes and six edges in each architecture. NAS-

Bench-201 provides the accuracy of architectures on

CIFAR-10, CIFAR-100 [10], and ImageNet-16-120 [4]

datasets.

• TransNAS-Bench-101 [6] includes two types of search

spaces. The micro one is cell-based and contains 4096

architectures, and the macro one is skeleton-based and

contains 3256 architectures. The cell in the micro space

is the same as NAS-Bench-201. We encode the cell

in the macro space with the same encoding in Arch-

Graph [7]. This search space provides architecture per-

formance across seven tasks, including segmentation, re-

gression, pixel-level prediction, and self-supervised tasks.

• NAS-Bench-NLP [9] is a cell-based and OON search

space which contains 14322 architectures. The maximum

number of edges and nodes in each cell is set to 26 and

24, respectively. This search space focuses on architec-

tures for NLP tasks, providing architecture performance

on Penn Tree Bank [17] and WikiText2 [16] datasets.

• DARTS [11] is a cell-based and OOE search space which

contains around 1018 architectures without available per-

formance. Each architecture is represented by a normal

cell and a reduction cell, which has seven nodes and eight

edges. In DARTS, we only search for the normal cell and

keep the reduction cell identical.

To unify the encoding of architectures from different search

spaces, we convert the architectures in the OOE search

spaces into an OON format.

2. Search Algorithms
We integrate CARL into two popular predictor-based

NAS frameworks: predictor-guided random search [1] and

predictor-guided evolutionary search [20] on search spaces

except for DARTS. The pipelines of two frameworks are

presented in Algorithm 1 and Algorithm 2. The total query

budget of the algorithms is set to N architectures. The

search algorithms aim to explore the search space S in pur-

suit of the optimal architecture A∗.

Algorithm 1: Predictor-guided Random Search

Initialize: Sample a few architectures randomly

from search space S to construct an initialization

space S0, train them for ground-truth performance

and add them to history.

while |history|+ |S0| < N do
Train Predictor F with architectures in history ;

Sample M candidate architectures at random

from S − history ;

Utilize F to predict the performance of each

candidate architecture ;

Update history by adding architectures with

top-K predicted values ;

return Architecture A′ with best ground-truth

performance in history

Algorithm 2: Predictor-guided Evolutionary

Search

Initialize: Sample a few architectures randomly

from search space S to construct an initialization

space S0, train them for ground-truth performance

and add them to history and population P .

while |history|+ |S0| < N do
Train predictor F with architectures in history ;

Select T well-performing architectures in P
through Tournament ;

Mutate the selected architectures and generate

M candidate architectures ;

Utilize F to predict the performance of each

candidate architecture ;

Update history and P by adding architectures

with top-K predicted values ;

Remove the oldest architecture from P ;
return Architecture A′ with best ground-truth

performance in history

The size of initialization space S0 is set to 20, and the

number of candidate architectures M is set to 200. The

number of updated architectures in each generation K is



set to {10,10,5,10} for NAS-Bench-101, NAS-Bench-201,

TransNAS-Bench-101, and NAS-Bench-NLP, respectively.

3. A Motivating Example for Critical Features

As revealed in recent studies [21, 22], architecture features

can be split into two parts: critical features that dominantly

determine the performance and redundant features that have

negligible effects. To explicitly display the impact of criti-

cal and redundant features on architecture performance, we

give a motivating example on NAS-Bench-201 in Figure 1.
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Figure 1. A motivating example for critical and redundant fea-

tures on CIFAR-10 within NAS-Bench-201. (Left) Architecture

features can be split into critical and redundant features. (Right)
The performance gap between architectures containing these crit-

ical and redundant features.

We compare the test accuracy of 125 architectures con-

taining the highlighted critical features (blue ones) with that

of another 125 architectures containing the highlighted re-

dundant features (orange ones) on the CIFAR-10 dataset.

Figure 1 shows a significant gap between the accuracy of ar-

chitectures containing critical and redundant features. The

former is densely distributed in the high-accuracy region,

while the latter has a much wider range. Besides, the dis-

tribution of architectures containing redundant features is

very similar to the global distribution (15625 architectures),

indicating that redundant features can not determine the ar-

chitecture performance. These results suggest that critical

features have a dominant impact on performance and should

be identified correctly for better prediction results.

4. Explanations for Causal Analysis

In SCM, there exist probabilistic dependencies between

causal features C and redundant features R: C ������ R.

There can be two types of relationships. First, C is the di-

rect cause of R, i.e., C → R. Alternatively, there is an

unobserved common cause M , i.e., C ← M → R. On

both conditions, there exists a backdoor path between re-

dundant features R and performance Y (R ← C → Y or

R ← M → C → Y ). This can induce spurious corre-

lations between R and Y , causing poor generalization of

performance predictors.

5. Implementation Details
We opt for a four-layer GCN [8] as the encoder and a three-

layer MLP as the regressor to compose the predictor. It is

trained with a learning rate of 1e-4, a dropout rate of 0.15,

and a weight decay of 1e-3. In the settings of ranking exper-

iments, the batch size is set to 32 and 8 on NAS-Bench-101

and NAS-Bench-201, respectively. λ1 and λ2 are set to 0.5

and 0.5. The margin a in hinge ranking loss is set to 0.5 on

all experiments. As for the searching experiments, the batch

size is set to 10 on all search spaces. The experiments on

DARTS are conducted on a single RTX 3090 GPU, while

others are conducted on a single RTX 2080 GPU.

6. Additional Experiments and Results
6.1. More Ablation Studies
In this section, we provide more results of the ablation study

for the generation of interventional samples, optimization

objective of redundant features, and hyperparameters in the

final loss function on NAS-Bench-201.

Generation of Interventional Samples. During the

causal intervention, we generate interventional samples by

combining various redundant representations with critical

ones in mini-batch architectures using random pairing. To

investigate the effect of the random pairing, we replace it

with the orderly pairing that performs the pairing operation

in order. The comparison is presented in Table 1.

Table 1. Ablation results on generation of interventional samples.

Training Portion 0.5% 1% 3%
Orderly Pairing 0.614 0.652 0.714

Random Pairing 0.656 0.697 0.755

We can observe that random pairing outperforms orderly

pairing by a significant margin. This is because the random

pairing adds to the diversity of the interventional samples.

Optimization Objective of Redundant Features. To re-

duce the impact of redundant features on predictions, we

use a uniform value, i.e., the mean accuracy of training sam-

ples, as the optimization objective. To inspect its effective-

ness, we use another uniform value (zero) and randomly

shuffle the ground-truth accuracy in a mini-batch to train

CARL.

As shown in Table 2, using a uniform value for learning

redundant representations can better facilitate the ranking

ability of CARL. Although Random shuffling helps CARL

learn representations uncorrelated with ground-truth, it also

introduces additional noise during training. Meanwhile, the

choice of uniform value is not that significant as long as it

does not differ from the ground-truth accuracy by several



Table 2. Ablation results on optimization objective of redundant

features.

Training Portion 0.5% 1% 3%
Random Shuffle 0.618 0.679 0.751

Uniform Zero 0.652 0.697 0.754

Uniform Mean 0.656 0.697 0.755

Table 3. Ablation results of λ1 and λ2 on NAS-Bench-201 with

1% training samples.

λ1&λ2 0 0.2 0.5 0.7 1
0 0.638 0.654 0.654 0.659 0.645

0.2 0.643 0.665 0.678 0.669 0.668

0.5 0.645 0.692 0.697 0.695 0.668

0.7 0.624 0.653 0.681 0.663 0.660

1 0.643 0.654 0.655 0.656 0.641

Table 4. Ablation results of λ1 and λ2 on NAS-Bench-201 with

3% training samples.

λ1&λ2 0 0.2 0.5 0.7 1
0 0.715 0.736 0.742 0.743 0.738

0.2 0.734 0.738 0.746 0.741 0.741

0.5 0.739 0.753 0.755 0.752 0.748

0.7 0.738 0.750 0.751 0.748 0.742

1 0.738 0.745 0.744 0.741 0.738

orders of magnitude. We can see that using zero and mean

accuracy achieves similar results.

Impact of Disentanglement and Intervention Intensity.
We provide the ablation results for λ1 and λ2 with more

training data on NAS-Bench-201 in Table 3 and Table 4. We

observe a similar trend that λ1 and λ2 can not be too small

or too large. Hence, we use 0.5 and 0.5 for λ1 and λ2. We

also validate the generalization of two hyperparameters on

NAS-Bench-Graph [19] with the Cora dataset. As shown

in Table 5, CARL achieves promising performance when

λ1 and λ2 range from 0.2 to 0.7, outperforming competi-

tive PINAT [15] (0.467). This demonstrates the strong gen-

eralizability of hyperparameters λ1 and λ2 to new search

spaces, eliminating the need for fine-grained grid search and

preserving CARL’s data-efficiency advantages.

Table 5. Ablation results of λ1 and λ2 on NAS-Bench-Graph Cora

with 1% training samples.

λ1&λ2 0.2 0.5 0.7
0.2 0.491 0.501 0.498

0.5 0.509 0.508 0.508

0.7 0.501 0.505 0.493

6.2. More Ranking Results
Results on More Training Samples. We validate the

ranking ability of CARL using more training samples on

NAS-Bench-101 and NAS-Bench-201. As shown in Ta-

ble 6, CARL outperforms PINAT on NAS-Bench-201 with

5% and 10% training samples. On NAS-Bench-101, PINAT

slightly takes the lead. We hypothesize that the sub-optimal

performance of CARL stems from the narrowed distribu-

tion shift between training and test samples as the training

portion grows. With sufficient and unbiased training sam-

ples, predictors are more likely to capture critical features

of architectures for correct predictions.

Table 6. Ranking results of CARL on NAS-Bench-101 and NAS-

Bench-201 with more training samples.

Search Space NAS-Bench-101 NAS-Bench-201

Training Portion 0.1% 1% 5% 10%

PINAT [15] 0.772 0.846 0.761 0.784

CARL (ours) 0.774 0.844 0.794 0.805

Results on Graph Tasks. We analyze the performance

of CARL on NAS-Bench-Graph [19], a new challenging

search space on graph node classification tasks. As shown

in Table 7, CARL beats the competitive PINAT [15] on

three datasets with 1% training data. This suggests the ex-

cellent generalization ability of CARL beyond conventional

computer vision and NLP tasks.

Table 7. Ranking results on NAS-Bench-Graph.

Dataset Cora Arxiv Citeseer
PINAT [15] 0.467 0.419 0.413

CARL (ours) 0.508 0.452 0.456

6.3. Results on Regression Errors
We report comparisons of CARL and PINAT in RMSE on

NAS-Bench-201 in Table 8. CARL achieves lower RMSE

than competitive PINAT.

Table 8. Regression results (RMSE) on NAS-Bench-201.

Training portion 0.5% 1% 3%
PINAT [15] 0.1105 0.1017 0.0879

CARL (ours) 0.1072 0.0957 0.0730

6.4. Plug-and-Play Solution
We also apply CARL to a simple MLP-based predictor to

validate its effects. We use the implementation of OFA [2].

As shown in Table 9, the MLP-based predictor gains sig-

nificant improvements on both search spaces, indicating the

effectiveness of CARL as a plug-and-play solution.

Table 9. Ranking results of the MLP-based predictor with/without

CARL on NAS-Bench-101 and NAS-Bench-201.

Search Space NAS-Bench-101 NAS-Bench-201

Portion 0.02% 0.04% 0.1% 0.5% 1% 3%

MLP 0.469 0.472 0.509 0.458 0.534 0.629

MLP w/ CARL 0.515 0.596 0.644 0.529 0.613 0.722

6.5. Results for Generalizable Encoding
To inspect the effectiveness of CARL for generalizable ar-

chitecture encoding [13, 14, 18] where architecture features

from multiple search spaces are used, we conduct the ex-

periment on a cross-domain NAS task as CDP [13], a GCN-

based predictor. Table 10 presents the improvement in Ktau



with the proposed CARL, reflecting that it can work well

with generalizable architecture encoding.

Table 10. Ranking results of CARL on the cross-domain task

(NAS-Bench-101 and NAS-bench-201 to ShallowDARTS).

Method CDP [13] CDP w/ CARL
Ktau 0.5306 0.5685

6.6. Computational Efficiency
To investigate the computational efficiency of CARL,

we compute the training and inference speed and com-

pare it with two state-of-the-art performance predictors:

PINAT [15] and NAR-Former [24]. We also compare the

computational efficiency of GCN with and without CARL.

For a fair comparison, we train all the predictors for 300

epochs with a training portion of 0.1% and a batch size of

10 on NAS-Bench-101 using a single RTX 2080 GPU.

Table 11. Training and inference times on NAS-Bench-101 with a

training portion of 0.1%.

Method Training time (sec) Inference time (sec) # Params (M)

PINAT [15] 750.61 253.22 0.55

NAR-Former [24] 2802.27 66.23 4.82

CARL (ours) 242.49 133.45 0.21

Table 12. Training and inference times of GCN with and without

our CARL on NAS-Bench-101 with a training portion of 0.1%.

Method Training time (sec) Inference time (sec) # Params (M)

GCN w/o CARL 185.79 132.59 0.15

GCN w/ CARL (ours) 242.49 133.45 0.21

According to Table 11, CARL consumes the least train-

ing time. This superior efficiency of CARL originates from

its lightweight model, which has 2.6× and 23.0× fewer pa-

rameters than PINAT and NAR-Former, respectively. As for

the inference time, CARL ranks second to NAR-Former. In

practical performance evaluation, it takes significant time

to obtain the ground-truth performance of an architecture.

For instance, about 32 minutes is required to train a sin-

gle architecture on the TPU v2 accelerator [25]. Therefore,

the difference in inference time of predictors is negligible

compared with the expensive cost of training architectures.

The excellent computational efficiency of CARL allows it

to achieve accurate and fast architecture performance pre-

diction in challenging NAS tasks where the computation re-

source is limited. Table 12 reflects that CARL introduces

minor computational overhead. This is because most of

CARL’s complexity lies in its GCN encoder rather than in

other components.

6.7. Results on Real-World Networks
We search large-scale EfficientNets (depth=242) using

NNLQP search space [12], which belongs to hardware-

aware tasks. As shown in Table 13, CARL achieves the best

MAPE and Acc(10%), demonstrating CARL’s effectiveness

on challenging real-world tasks.

Table 13. Searching results on NNLQP search space.

Method CARL (ours) NAR-Former [24] nn-Meter [26]

MAPE↓ 18.54% 28.05% 18.93%

Acc(10%)↑ 32.30% 24.08% 23.40%

6.8. Searched Architecture in DARTS

We first search for architectures on CIFAR-10 and transfer

the searched architecture to ImageNet. Figure 2 demon-

strates the architecture in DARTS discovered by CARL,

which achieves a test accuracy of 97.67% on CIFAR-10 and

76.1% on ImageNet, respectively. The normal cell and the

reduction cell are the same in the searched architecture.
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Figure 2. Cell architecture found by CARL on CIFAR-10 and ImageNet

datasets.

6.9. More Visualization Results

Results on DARTS. We provide more visualization re-

sults on DARTS. The relative significance of architecture

features in normal cells of SOTA methods [3, 15, 23] is vi-

sualized in Figure 3. We discover that skip connects and

separable convolutions between node 0 and the input1/2

cause good performance.

Figure 3. Visualization results for the significance of architecture

features on DARTS.

Robustness of Feature Separation. We validate the ro-

bustness of feature separation by masking one feature at a

time on NAS-Bench-201 CIFAR-10. As shown in Figure 4,

masking high-significance features (OP1, OP4, and OP6)

leads to large performance drops, demonstrating the effec-

tiveness and robustness of CARL’s feature separation.
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Figure 4. Visualization results for CARL’s feature separation on

NAS-Bench-201. (Left) Feature significance of the architecture

feature. (Right) The performance drops after masking the corre-

sponding feature.

7. Limitations
CARL is primarily designed for single-objective NAS and

may require customized strategies for multi-objective sce-

narios, as different objectives may depend on different crit-

ical features. We will explore this in future work.
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