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More experimental details We adopt the experimental setup
introduced in [14, 63] as our framework for evaluating our
domain generalization approach. This framework entails
maintaining consistency in various aspects, including model
selection criteria, dataset partitioning, and the utilization
of the same network backbone to ensure comparability. In
alignment with the methodology employed in DomainBed,
we opt for the ViT-S/16 model, as recommended in [27].
Notably, this choice is motivated by its proximity to ResNet-
50 in terms of parameter count and runtime memory usage.
For our comparative analysis, we benchmark our approach
against the most recent and top-performing domain gener-
alization algorithms. We compare with both ViT-Small/16
(with 21.7 million parameters) and ResNet50 (with 25.6 mil-
lion parameters), both pre-trained on ImageNet-1k, as our
backbone models.
Analysis of the domain adapters layer configuration

Two prevalent block placement methods, often referenced
in existing research [46, 50], are “every-two" and “last-
two". “Every-two" involves situating the block in the even-
numbered blocks, while “last-two" places the block in the
final two even blocks, as illustrated in Figure 4 (a). Our em-
pirical findings, presented in Table 10, indicate that “every-
two" outperforms “last-two" in the context of our method.

Method Layer Config Acc (PACS)
Domain Adapter Every 2 89.4 ± 0.3
Domain Adapter Last 2 88.4 ± 0.2

Table 10. Analysis of layer configuration on PACS benchmark. For
simplicity, we fix the domain adapter positioned after the MSA
module and outside the residual connection of MSA here. “every-
two" achieves better performance than “last-two" in our method.
Analysis of domain adapters position in ViT block We
consider five different configurations of domain adapters
within a vision transformer block, see Figure 4 (b). We em-
pirically find that the first case achieves the best performance
in Table 11.

Method Position Config Acc (PACS)
Domain Adapter First case 89.4 ± 0.3
Domain Adapter Second case 88.9 ± 0.3
Domain Adapter Third case 88.6 ± 0.1
Domain Adapter Fourth case 84.5 ± 0.4
Domain Adapter Fifth case 83.6 ± 0.5

Table 11. Analysis of domain adapter position in ViT block on
PACS benchmark. We fix layer configuration as “every 2" here.
The first case achieves the best performance.

Result of domain adapter customization with GPT guid-

ance. Similar to the tried-and-tested design choices in Ta-

Dataset Domain
1

Domain
2

Domain
3

Domain
4

Domain
5

Domain
6

PACS photo art cartoon sketch - -
adapter Conv Conv Conv ViT - -
VLCS VOC LABEL CAL SUN - -
adapter Conv Conv ViT ViT - -
OfficeHome clip art real product - -
adapter ViT ViT ViT ViT - -
Terra L38 L43 L46 L100 - -
adapter Conv Conv Conv Conv - -
DomainNet clip Info paint quick real sketch
adapter ViT Conv Conv ViT Conv ViT

Table 12. GPT guided domain adapter customization for five bench-
marks.

ble 8, GPT-guided adapter selection follows a similar trend
in Table 12. Domains with limited color information, such as
the sketch domain in the PACS dataset, are typically assigned
ViT adapters, while more colorful domains, like photo and
art, are matched with Conv adapters.
Fully Finetune vs Only Adapter In Table 13, we found
that fully fine-tuning all network parameters leads to bet-
ter performance than fine-tuning only the custom domain
adapters and classifier, with a 1.2% improvement on the
PACS dataset and a 3.0% improvement on the OfficeHome
dataset. This improvement likely arises from the relatively
small size of our pre-trained network, where fine-tuning only
the adapter may not be adequate for downstream tasks. As a
result, we adopt comprehensive fine-tuning strategies in all
our experiments.

Method Acc(OfficeHome) Acc(PACS)
Adapter & Classifier 73.1 ± 0.0 88.2 ± 0.2
Fully Finetune 76.1 ± 0.1 89.4 ± 0.3

Table 13. Analysis of Fully Finetune vs Only Adapter & Classifier.

The robustness of our method to noisy domain IDs In this
section, we investigated the robustness of our CDA method
to noisy domain IDs, as detailed in Table 14. Specifically,
during training, we randomized 20% of the domain labels,
meaning a domain-1 sample could be randomly reassigned to
domain-2, and a domain-2 sample to domain-3, for example.
The results show a slight degradation in performance when
20% of the domain labels are randomized, demonstrating
CDA’s resilience to such noise.
Compare with more methods In this section, we compare
our method with the previous SOTA approach using the same
ViT-S/16 backbone. Specifically, we implemented PCL [59]
within the same ViT-S/16 architecture. The results, achieving



Figure 4. (a) Illustration of two different CDA layer configurations. The left: “every-two" placement. The right: “last-two" placement. (b)
Illustration of five different configurations of a domain adapter within a vision transformer block. From left to right, the configurations are
sequentially ordered from the first to the fifth case.

Method Acc(OfficeHome) Acc(PACS)
Original 76.1 ± 0.1 89.4 ± 0.3
20% domain label randomized 75.9 ± 0.1 88.8 ± 0.4

Table 14. Analysis of robustness to noisy domain IDs.

74.4±0.3 on OfficeHome and 48.5±0.2 on DomainNet, fall
short of those obtained by our CDA method in Table 15.

Method Backbone Acc(OfficeHome) Acc(DomainNet)
PCL[59] ViT-S/16 74.4 ± 0.3 48.5 ± 0.2
SWAD [6] ViT-S/16 73.8 ± 0.2 48.3 ± 0.3
GMoE[27] ViT-S/16 74.2 ± 0.4 48.7 ± 0.2
CDA(Ours) ViT-S/16 76.1 ± 0.1 50.3± 0.4

Table 15. Compare with PCL [59] and SWAD [6] with the same
ViT-S/16 backbone.

Experiments Compute Resources All experiments were
conducted on an NVIDIA GeForce RTX 3090 graphics card
with 24 GB of memory. Each individual experiment took
approximately 30 minutes to run, with the total computation
time for the entire project amounting to approximately 30
hours on the GPU.

5.1. Multi-head Attention Visualization

To gain deeper insights into how our method contributes to
enhancing the domain generalization capabilities of the ViT
model, we have visualized the attention maps for the last
block of the ViT both with and without the integration of our
method. These visualizations are presented in Figure 5 and
Figure 6.

Our observations reveal that our method, the Customized
Domain Adapters (CDA), tends to produce more comprehen-
sive attention maps. This phenomenon could be attributed
to using both ViT and CNN adapters within our model ar-
chitecture. This combination potentially allows the model

to leverage a broader range of information when making
predictions, including more details such as the texture, color,
and shape of objects.



Figure 5. Multi-head attention visualization on the last block of ViT-S/16 and CDA-S/16. Images are from Photo domain in PACS.



Figure 6. Multi-head attention visualization on the last block of ViT-S/16 and CDA-S/16. Images are from Photo domain in PACS.


