
Loss Functions for Predictor-based Neural Architecture Search

Supplementary Material

1. Descriptions and Implementation Details

In this section, we provide implementation details for loss

functions and descriptions for search spaces used in experi-

ments.

1.1. Loss Functions

We first present the formulation and implementation details

of eight loss functions evaluated in this paper.

MSE. MSE is a popular regression loss for predictors [11–

13, 20, 21], which calculates the squared error between pre-

diction scores and GTs:

LMSE =
n∑

i=1

(yi − ŷi)
2 (1)

We directly use the official implementation from the Py-

Torch package [16].

HR. HR is a pairwise hinge ranking loss widely used in

prior works [6, 14, 15]. We formulate it as:

Lpair =

n−1∑
i=1

n∑
j=i+1

φ((ŷi − ŷj) ∗ sign(yi − yj)) (2)

where φ(z) = max(0, a − z) with a margin parameter a.

The loss is 0 only when the pair is correctly ranked with a

margin larger than a. We use the implementation from the

open source of FlowerFormer [6].

LR. LR is a pairwise ranking loss used in ReNAS [26].

LR is similar to HR except that it uses a logistic function

φ(z) = log(1 + e−z), alternatively. We use the implemen-

tation from the open source of ReNAS.

MSE+SR. MSE+SR is composed of MSE and a pairwise

sequential ranking loss. It can be formulated as:

LMSE+SR = LMSE+λ
n∑

i=1

(ˆyI(i)− ŷi)−(yI(i)−yi) (3)

where I(·) is randomly sampled from 1 to n and λ is a

weight coefficient ranging from (0, 1]. We use the imple-

mentation from the open source of NAR-Former [6].

ListMLE. ListMLE [25] is a listwise ranking loss intro-

duced by DCLP [29]. The predictor first outputs a list of

prediction scores Ŷ . A sorted list Ŷg = {ŷgi}Ni=1 is then

obtained by sorting Ŷ according to GTs of architectures in

descending order. For instance, the first item in Ŷg denotes

the prediction score of the architecture with the highest GT.

ListMLE maximizes the probability of Ŷg to make the pre-

dicted ranking list close to the actual ranking of architec-

tures, which can be formulated as:

LListMLE = −
n∑

i=1

log

(
exp(ŷgi)∑n
j=i exp(ŷgj)

)
(4)

We use the implementation from the open source of

DCLP [29].

EW. EW is a weighted regression loss that adopts an

exponential level weight for each architecture used in

BONAS [29] and CATE [27]. It can be formulated as:

LEW = −
n∑

i=1

(exp(yi)− 1)(ŷi − yi)
2 (5)

We opt for the implementation version of BONAS [19].

MAPE. MAPE is also a weighted regression loss that em-

ploys the percentage between the GT of each architecture

and the GT of the global best as the weight. It was intro-

duced by BANANAS [23], which can be formulated as:

LMAPE = −
n∑

i=1

∣∣∣∣ yi − ŷi
y∗ − yi

∣∣∣∣ (6)

We use the implementation from the open source of BA-

NANAS [23]. Given that DARTS does not provide the ac-

curacy of the best architecture, we use 99% to approximate

the global optima.

WARP. WARP [22] is a weighted ranking loss designed for

the multilabel image annotation task. We adapt it to train the

predictor for its success in the multi-label image annotation

task. WARP uses a stochastic sample strategy to optimize

the top-K ranking precision of the predictor. For each ar-

chitecture in the batch, we randomly sample architectures

until we find a violated architecture xm such that the rela-

tive ranking of the architecture pair (xi, xm) is incorrectly

predicted. It can be formulated as:

LWARP = −
n∑

i=1

J(i)(ŷi − ŷm) · sign(yi − ym) (7)

where J(i) is a weighting function and M is the number

of sampling trials before finding a violated architecture. A

small M means that it is easy to find a violated architecture

for the architecture xi, implying that xi is ranked far away

from its actual position. In this case, the predictor should

assign a large loss to xi to place it in the correct position.

Hence, we define the weighting function as:

J(i) = log

[
n− 1

M

]
· (eyi − 1) (8)

where [·] is the flooring function. We also use an exponen-

tial level of weight for each architecture. We adapt WARP

into the performance predictor based on the implementation

of WSABIE [22].

1.2. Search Spaces
Below, we discuss the search spaces we used. The URLs of

search spaces are reported in Table 1.

NAS-Bench-101. NAS-Bench-101 [28] is a cell-based

search space composed of over 423k architectures. An op-

eration is represented by a node in the cell. Each architec-

ture cell includes at most seven nodes and nine edges. The

search space provides the accuracy of architectures on the

CIFAR-10 dataset.

NAS-Bench-201. NAS-Bench-201 [3] is also a cell-based

search space which contains 15625 architectures. The op-

eration type is represented by the edge on NAS-Bench-201.

There exist four nodes and six edges in the architecture cell.

NAS-Bench-201 provides the accuracy of architectures on

the CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets.

TransNAS-Bench-101. TransNAS-Bench-101 [4] is

composed of a Micro (cell-based) search space containing

4096 architectures and a Macro (skeleton-based) search

space containing 3256 architectures. The constitution

of the architecture cell in the micro search space is the

same as NAS-Bench-201. As for the macro space, we use

the same encoding in Arch-Graph [5]. The search space

provides architecture performance across seven tasks. In

our experiments, we test each loss function on four tasks:

Class-Object, Class-Scene, Jigsaw, and Autoencoder.

NAS-Bench-Graph. NAS-Bench-Graph [17] contains

26206 architectures and a cell-based search space. There

are six nodes and at most eight edges in each cell. NAS-

Bench-Graph provides the accuracy of architectures on nine

node classification datasets. The Cora dataset is used in our

experiments.

DARTS. DARTS [10] is an open-domain cell-based

search space that does not provide architecture perfor-

mance. It is a much larger search space with around 1018

architectures. Each architecture consists of a normal cell

and a reduction cell, each containing seven nodes and eight

edges.

2. Details of PWLNAS
PWLNAS is based on the prevalent predictor-guided evo-

lution framework [7] for NAS. This framework first ran-

domly samples a subset of architectures from the search

space to compose the initial population and dataset. Then,

a set of candidate architectures is generated by mutating

high-accuracy architectures in the current population in an

iterative way. These candidate architectures are estimated

by a predictor (trained on the entire dataset), and those

with top predicted scores are added to the population and

dataset. The architecture with the highest GT within the

dataset is selected as the searching result. However, this

framework utilizes a fixed loss function during the iterative

training of the predictor. Instead, we opt for a piecewise

loss function that combines effective ones to enhance the

predictor-guided evolution framework. We use a warm-up

loss function (ranking/regression loss) in the early iterations

and change it to a weighted loss function in the following

iterations. The choice of loss function and the number of

warm-up samples depend on specific tasks. The pipeline of

PWLNAS is demonstrated in Algorithm 1.

On all tasks, we set the initial size n0 to 20, the number

of offspring no to 10, and the number of mutated architec-

tures nmu to 5. Other hyperparameters of PWLNAS on dif-

ferent tasks are presented in Table 9. Allowing for DARTS

does not provide the accuracy of the best architecture, we

use 100% as the global optimal GT when training the pre-

dictor with MAPE loss.

Algorithm 1 PWLNAS

Input: Search space S, training dataset Dt, population Dp,

initial size n0, query budget nmax, number of candidate

architectures nc, number of offspring no, number of in-

dividuals to mutate nmu, number of warm-up samples

nw, loss function used in warm-up stage Lw, main loss

function Lm, performance predictor P.

1: Initialize Dt and Dp with n0 architectures randomly

sampled in S and their GT performance;

2: for n from n0 to nmax do
3: if n < nw then
4: Train P with Dt using the warm-up loss Lw;

5: else
6: Train P with Dt using the main loss Lm;

7: end if
8: Choose nmu architectures based on their validation

accuracy via tournament;

9: Mutate the selected architectures and generate nc

candidate architectures;

10: Utilize P to predict the performance of candidate ar-

chitectures;

11: Generate offsprings Mo that consist of candidate ar-

chitectures with top-no highest prediction scores.

12: Append Mo to Dt and Dp;

13: Remove the no oldest architectures from Dp;

14: n = n+ no

15: end for
16: return Architecture x∗ with the highest GT in Dt.

Table 1. Basic information of search spaces used in our experiments.

Search Space Size Is Cell-based? Task URL
NAS-Bench-101 423k � Image Classification https://github.com/google-research/nasbench

NAS-Bench-201 15625 � Image Classification https://github.com/D-X-Y/NAS-Bench-201

TransNAS-Bench-101 Micro 4096 � Class Scene, Class Object,

Jigsaw, Autoencoder
https://github.com/yawen-d/TransNASBench

TransNAS-Bench-101 Macro 3256 ×
NAS-Bench-Graph 26206 � Graph Node Classification https://github.com/THUMNLab/NAS-Bench-Graph

DARTS 1018 � Image Classification https://github.com/quark0/darts

Figure 1. Precision@T and N@K of different weighting types for WARP and EW on NAS-Bench-201 CIFAR-100 and ImageNet-16-120

with 1% training data. Note that a higher Precision@T and a lower N@K are preferred.

3. Additional Experimental Results
3.1. Full Evaluation of performance Predictor
In this part, we provide the full results of different loss

functions with more assessment metrics. All the results are

averaged over 30 runs. Additionally, we use the common

Normalized Discounted Cumulative Gain@K (NDCG@K)

metric in the field of information retrieval. It measures the

quality of the top-K predicted architectures. Assuming the

GT of the ith best architecture in the search space is ygi .
We use XK = {xi|r̂i <= K} to represent the architec-

tures with top-K highest prediction scores. NDCG@K can

be calculated as:

NDCG@K =
DCG@K

IDCG@K
,

DCG@K =
∑

xi∈XK

yi
log2(i+ 1)

,

IDCG@K =
K∑
i=1

ygi
log2(i+ 1)

.

(9)

where Discounted Cumulative Gain@K (DCG@K) com-

putes the scores of the top-K predicted architectures and

gives larger weights to architectures with higher rankings.

Ideal Discounted Cumulative Gain@K (IDCG@K) is the

highest value for NDCG@K. NDCG@K is scaled up by a

factor of 100 in our results.

Different search spaces and training portions. We plot

the results on Precision@0.5, N@10, NDCG@10, and

Kendall’s Tau on 13 tasks in Figure 3, Figure 4, and

Figure 5. The trend is largely similar across all search

spaces. In the region of small training portion, ranking loss

functions like HR and ListMLE roughly perform well in

top-ranking metrics. When the training portion increases,

weighted loss functions tend to identify well-performing

architectures better. The optimal loss function varies ac-

cording to specific search spaces and tasks. For instance,

with enough training data, MAPE, EW, and WARP per-

form best on NAS-Bench-201, TransNAS-Bench-101 Mi-

cro Jigsaw, and TransNAS-Bench-101 Macro, respectively.

Among these weighted loss functions, WARP is the most

stable on all tasks and is recommended as a reliable choice

for unseen tasks with sufficient training data. As for the

overall ranking performance, ranking loss functions gener-

ally take the lead.

Different weighting types. We further investigate the im-

pact of weighting types of WARP and EW on another two

datasets on NAS-Bench-201. Figure 1 demonstrates the ad-

Table 2. Results of the MLP-based AP with different loss functions on NAS-Bench-101 with 0.1% training data and NAS-Bench-201 with

1% training data. Precision@0.5 is short for Ptop@0.5. Bold indicates the best.

Tasks NB101 CIFAR-10 NB201 CIFAR-10 NB201 CIFAR-100 NB201 ImageNet-16-120

Metrics Ptop@0.5↑ N@10↓ τ↑ Ptop@0.5↑ N@10↓ τ↑ Ptop@0.5↑ N@10↓ τ↑ Ptop@0.5↑ N@10↓ τ↑

MSE 2.46 11832.40 0.18 4.41 250.94 0.43 5.77 163.80 0.54 7.69 75.10 0.57

HR 19.58 1172.60 0.65 22.15 23.58 0.65 15.90 76.60 0.66 19.74 32.40 0.64

ListMLE 16.85 325.80 0.65 24.15 22.74 0.66 16.79 53.20 0.67 22.05 34.10 0.65
WARP 11.34 470.20 0.57 9.36 113.20 0.43 7.56 98.70 0.49 7.95 79.60 0.45

Table 3. Results of the Transformer-based PINAT with different loss functions on NAS-Bench-101 with 0.1% training data and NAS-

Bench-201 with 1% training data. Precision@0.5 is short for Ptop@0.5. Bold indicates the best.

Tasks NB101 CIFAR-10 NB201 CIFAR-10 NB201 CIFAR-100 NB201 ImageNet-16-120

Metrics Ptop@0.5↑ N@10↓ τ↑ Ptop@0.5↑ N@10↓ τ↑ Ptop@0.5↑ N@10↓ τ↑ Ptop@0.5↑ N@10↓ τ↑

MSE 18.52 1956.80 0.75 8.62 146.60 0.62 14.96 67.17 0.66 17.18 64.00 0.67

HR 23.12 635.14 0.76 29.32 8.44 0.67 19.23 33.33 0.68 25.32 16.75 0.67

ListMLE 25.73 236.70 0.78 23.56 21.78 0.68 24.87 28.40 0.69 27.35 13.20 0.68
WARP 29.98 140.13 0.71 38.71 3.78 0.65 27.78 18.33 0.67 31.54 12.67 0.66

Table 4. Searching results on TransNAS-Bench-101 Macro with a

query budget of 50. Bold indicates the best.

Tasks Cls.O. Cls.S. Auto. Jigsaw

Predictor Loss Acc.↑ Acc.↑ SSIM↑ Acc.↑

Arch-Graph [5] BCE 47.35 56.77 71.32 96.70

WeakNAS [24] MSE 47.40 56.88 72.54 96.86

PWLNAS (ours)

MSE 47.11 56.80 73.72 96.83

HR 47.11 56.92 73.69 96.84

ListMLE 47.09 56.94 73.84 96.84

WARP 47.27 56.79 73.87 96.82

PW 47.46 57.11 74.02 96.90
Global Best 47.96 57.48 76.88 97.02

vantage of ‘EXP-GT’ and ‘GT’ over ‘Ranking’ for both loss

functions in Precision@T and N@K. This implies that the

top-ranking ability of weighted loss functions is sensitive to

the choice of weight, and GT-based weights are more effec-

tive than ranking-based weights.

Different predictors. We test different categories of loss

functions using two representative predictors: the simple

MLP-based AP [2] and the advanced Transformer-based

PINAT [13] on NAS-Bench-101 and NAS-Bench-201. As

shown in Table 2 and Table 3, we observe that ListMLE

yields the best results with AP, and WARP beats other loss

functions with PINAT. These results reveal that ranking loss

functions are suitable for simple predictors, while weighted

loss functions fit better with advanced predictors.

3.2. Searching on TransNAS-Bench-101 Macro
We use a PW loss composed of HR and WARP on

TransNAS-Bench-101 Macro. Table 4 shows the superior

performance of PW loss on all tasks compared with the sin-

gle loss and prior works, which is consistent with the results

on the micro space. This suggests that combining specific

loss functions can empower the predictor-based NAS.

3.3. Searching on NAS-Bench-NLP
We validate our PWLNAS on an additional benchmark:

NAS-Bench-NLP [9], with a PW loss composed of HR and

WARP. As shown in Table 5, PWLNAS achieves the lowest

log PPL complexity among all competitors, indicating its

strong generalizability in the challenging NLP tasks.

Table 5. Searching results on NAS-Bench-NLP with a query bud-

get of 100. Bold indicates the best.

Method PWLNAS (ours) BANANAS [23] NASBOT [8] NPENAS [20]

Log PPL↓ 4.575 4.595 4.579 4.587

3.4. Searching with Different Strategies
We compare our PWLNAS using random search [1] and

evolutionary search [18] strategy on NAS-Bench-101. Ta-

ble 6 demonstrates that PWLNAS improves both baselines

by a large margin, which demonstrates its broad applicabil-

ity with different search strategies.

Table 6. Search results on NAS-Bench-101 using different search

strategies with a query budget of 150.

Strategy Random Search Evolutionary Search
Test error (%) w/o PWLNAS 6.43 6.36

Test error (%) w/ PWLNAS 6.06 (↓ 0.37%) 5.80 (↓ 0.56%)

3.5. Computational Cost
We calculate the computational cost of each loss function

on NAS-Bench-201 with 1% training data in Table 7 using

a single RTX 3090 GPU. Among them, WARP is the most

time-consuming option because of its iterative sampling in

mini-batch to construct data pairs. Meanwhile, ranking loss

functions take more time than MSE due to their higher com-

putational complexity in processing pairwise or listwise re-

lationships.

Table 7. Training time on NAS-Bench-201 with a training portion

of 1%.

Loss MSE LR HR MSE+SR ListMLE EW MAPE WARP

Time (Sec) 79.26 89.81 90.21 84.45 81.86 75.66 76.86 380.92

3.6. Visualization Results on DARTS
We visualize the architecture cells searched by different loss

functions in Figure 2.

4. Hyperparameter Tuning
We present the details of hyperparameter tuning for loss

functions in Table 8. The baseline predictor is based on

GCN. We use different hyperparameters for different loss

functions for two reasons. First, each loss function is sen-

sitive to the choice of hyperparameter. For example, list-

wise ranking loss prefers a higher learning rate, and pair-

wise ones require a lower learning rate. Hence, it is fairer

to compare these loss functions with different levels of hy-

perparameter tuning. Besides, it is common practice for

predictor-based NAS to modify the hyperparameter for bet-

ter search results because the major computational cost lies

in training the architectures for GT performance instead of

training the predictor. As a result, it makes sense to tune the

hyperparameters for the predictor-based NAS in practice.

Then, we give the hyperparameters of three performance

predictors in our experiments. The GCN-based predictor is

composed of a four-layer GCN encoder and a three-layer

MLP regressor. As for the MLP-based predictor, we use

the implementation from AP [2] without changing its struc-

ture. Similarly, we directly employ the PINAT [13] as the

Transformer-based predictor. The batch size has a range

of [16, 32, 64, 128], and we choose the maximum in this

range that does not exceed the number of training data. For

instance, if we train the predictor with 100 architectures

(0.02% portion), the batch size is set to 64. All experiments

are conducted on a single RTX 3090 GPU.

Table 8. Hyperparameters of loss functions for architecture performance prediction.

Loss Hyperparameter NB101 NB201 TB101 Micro TB101 Macro NB-Graph

MSE
Learning rate 0.0005 0.0001 0.0001 0.0001 0.0001

Weight decay 0.001 0.0005 0.0005 0.0005 0.0005

LR
Learning rate 0.0005 0.0001 0.0001 0.0001 0.0001

Weight decay 0.001 0.0005 0.0005 0.0005 0.0005

HR

Learning rate 0.0005 0.0001 0.0001 0.0001 0.0001

Weight decay 0.001 0.0005 0.0005 0.0005 0.0005

Margin a 0.5 0.5 0.5 0.5 0.5

MSE+SR

Learning rate 0.0005 0.0001 0.0001 0.0001 0.0001

Weight decay 0.001 0.0005 0.0005 0.0005 0.0005

Auxiliary coefficient λ 0.5 0.6 0.6 0.6 0.5

ListMLE
Learning rate 0.001 0.0005 0.0005 0.0005 0.0005

Weight decay 0.001 0.001 0.001 0.001 0.001

EW
Learning rate 0.0005 0.0001 0.0001 0.0001 0.0001

Weight decay 0.001 0.0005 0.0005 0.0005 0.0005

MAPE
Learning rate 0.0005 0.0001 0.0001 0.0001 0.0001

Weight decay 0.001 0.0005 0.0005 0.0005 0.0005

WARP
Learning rate 0.001 0.005 0.0005 0.0005 0.0005

Weight decay 0.001 0.001 0.001 0.001 0.001

Table 9. Hyperparameter of PWLNAS on different tasks.

Search Space Task Loss nw nmax nc

NB101 CIFAR-10 HR (warm-up), WARP (main) 100 150 200

NB201

CIFAR-10 HR (warm-up), MAPE (main) 40 100 200

CIFAR-100 HR (warm-up), MAPE (main) 40 100 200

ImageNet16-120 HR (warm-up), MAPE (main) 40 100 200

TB101 Micro

Class Scene HR (warm-up), WARP (main) 30 50 100

Class Object HR (warm-up), WARP (main) 30 50 100

Jigsaw MSE (warm-up), EW (main) 30 50 100

Autoencoder HR (warm-up), WARP (main) 30 50 100

TB101 Macro

Class Scene HR (warm-up), WARP (main) 30 50 100

Class Object HR (warm-up), WARP (main) 30 50 100

Jigsaw HR (warm-up), WARP (main) 30 50 100

Autoencoder HR (warm-up), WARP (main) 30 50 100

DARTS CIFAR-10 HR (warm-up), MAPE (main) 40 100 200

c_{k_2}

0
sep_conv_5x5

3sep_conv_5x5

c_{k_1} sep_conv_5x5 1

sep_conv_5x5

2

sep_conv_5x5

skip_connect

sep_conv_3x3

sep_conv_5x5
c_{k}

(a) Normal cell found by MSE loss.

c_{k_2}

0
skip_connect 2

sep_conv_3x3

3

sep_conv_5x5

c_{k_1}
dil_conv_3x3

1skip_connect
avg_pool_3x3

dil_conv_5x5

c_{k}

avg_pool_3x3

(b) Reduction cell found by MSE loss.

c_{k_2}

0

sep_conv_3x3

1

sep_conv_5x5

2

max_pool_3x3

c_{k_1}

sep_conv_3x3

sep_conv_5x5

sep_conv_5x5

3
skip_connect

c_{k}

sep_conv_5x5

(c) Normal cell found by HR loss.

c_{k_2}

0
skip_connect

1dil_conv_3x3 2
dil_conv_3x3

c_{k_1} avg_pool_3x3
sep_conv_5x5 3

sep_conv_5x5

c_{k}
max_pool_3x3

skip_connect

(d) Reduction cell found by HR loss.

c_{k_2}

0

sep_conv_3x3
1

sep_conv_3x3

2

sep_conv_3x3

c_{k_1} sep_conv_5x5

skip_connect

sep_conv_3x3

3
sep_conv_3x3

avg_pool_3x3

c_{k}

(e) Normal cell found by ListMLE loss.

c_{k_2} 0

avg_pool_3x3

1
sep_conv_5x5

2

sep_conv_3x3

c_{k_1}

avg_pool_3x3

dil_conv_5x5

sep_conv_5x5

c_{k}
3

dil_conv_5x5

max_pool_3x3

(f) Reduction cell found by ListMLE loss.

c_{k-2}

0

sep_conv_3x3 1
sep_conv_3x3

3

skip_connect

c_{k-1} sep_conv_5x5

sep_conv_5x5
2sep_conv_5x5 c_{k}

sep_conv_5x5 sep_conv_3x3

(g) Normal cell found by MAPE loss.

c_{k-2}

0

sep_conv_3x3 1
sep_conv_3x3

3

skip_connect

c_{k-1} sep_conv_5x5

sep_conv_5x5
2sep_conv_5x5 c_{k}

sep_conv_5x5 sep_conv_3x3

(h) Reduction cell found by MAPE loss.

c_{k_2}

0

sep_conv_3x3
2

sep_conv_3x3

3

skip_connect

c_{k_1} sep_conv_3x3 1
dil_conv_3x3

sep_conv_3x3

skip_connect

sep_conv_3x3

c_{k}

(i) Normal cell found by PW loss.

c_{k_2}
0

sep_conv_3x3

1sep_conv_3x3

c_{k_1}
max_pool_3x3

3dil_conv_3x3

max_pool_3x3

2dil_conv_5x5

sep_conv_5x5

c_{k}

sep_conv_3x3

(j) Reduction cell found by PW loss.

Figure 2. Architectures found by different loss functions on the CIFAR-10 dataset.

Figure 3. Precision@0.5, N@10, NDCG@10 and Kendall’s Tau (Left to Right) of different loss functions on NAS-Bench 101, NAS-

Bench-201, and TransNAS-Bench-101 Micro. Note that a higher metric indicates better performance except for N@10.

Figure 4. Precision@0.5, N@10, NDCG@10 and Kendall’s Tau (Left to Right) of different loss functions on TransNAS-Bench-101

Micro/Macro. Note that a higher metric indicates better performance except for N@10.

Figure 5. Precision@0.5, N@10, NDCG@10 and Kendall’s Tau (Left to Right) of different loss functions on NAS-Bench-Graph. Note that

a higher metric indicates better performance except for N@10.

References
[1] James Bergstra and Yoshua Bengio. Random search for

hyper-parameter optimization. Journal of machine learning
research, 13(2), 2012. 4

[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once-for-all: Train one network and specialize it

for efficient deployment. arXiv preprint arXiv:1908.09791,

2019. 4, 5

[3] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the

scope of reproducible neural architecture search. In Proc. of
ICLR, 2019. 2

[4] Yawen Duan, Xin Chen, Hang Xu, Zewei Chen, Xiaodan

Liang, Tong Zhang, and Zhenguo Li. Transnas-bench-101:

Improving transferability and generalizability of cross-task

neural architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 5251–5260, 2021. 2

[5] Minbin Huang, Zhijian Huang, Changlin Li, Xin Chen, Hang

Xu, Zhenguo Li, and Xiaodan Liang. Arch-graph: Acyclic

architecture relation predictor for task-transferable neural ar-

chitecture search. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages

11881–11891, 2022. 2, 4

[6] Dongyeong Hwang, Hyunju Kim, Sunwoo Kim, and Kijung

Shin. Flowerformer: Empowering neural architecture encod-

ing using a flow-aware graph transformer. In Proc. of CVPR,

pages 6128–6137, 2024. 1

[7] Kun Jing, Jungang Xu, and Pengfei Li. Graph masked au-

toencoder enhanced predictor for neural architecture search.

In Proc. of IJCAI, 2022. 2

[8] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider,

Barnabas Poczos, and Eric P Xing. Neural architecture

search with bayesian optimisation and optimal transport. Ad-
vances in neural information processing systems, 31, 2018.

4

[9] Nikita Klyuchnikov, Ilya Trofimov, Ekaterina Artemova,

Mikhail Salnikov, Maxim Fedorov, Alexander Filippov, and

Evgeny Burnaev. Nas-bench-nlp: neural architecture search

benchmark for natural language processing. IEEE Access,

10:45736–45747, 2022. 4

[10] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:

Differentiable architecture search. In Proc. of ICLR, 2018. 2

[11] Yuqiao Liu, Yehui Tang, and Yanan Sun. Homogeneous

architecture augmentation for neural predictor. In Proc. of
ICCV, 2021. 1

[12] Shun Lu, Jixiang Li, Jianchao Tan, Sen Yang, and Ji

Liu. Tnasp: A transformer-based nas predictor with a self-

evolution framework. Advances in Neural Information Pro-
cessing Systems, 34:15125–15137, 2021.

[13] Shun Lu, Yu Hu, Peihao Wang, Yan Han, Jianchao Tan, Jix-

iang Li, Sen Yang, and Ji Liu. Pinat: A permutation invari-

ance augmented transformer for nas predictor. In Proc. of
AAAI, 2023. 1, 4, 5

[14] Xuefei Ning, Yin Zheng, Tianchen Zhao, Yu Wang, and

Huazhong Yang. A generic graph-based neural architecture

encoding scheme for predictor-based nas. In Proc. of ECCV,

2020. 1

[15] Xuefei Ning, Zixuan Zhou, Junbo Zhao, Tianchen Zhao,

Yiping Deng, Changcheng Tang, Shuang Liang, Huazhong

Yang, and Yu Wang. Ta-gates: An encoding scheme for neu-

ral network architectures. Advances in Neural Information
Processing Systems, 35:32325–32339, 2022. 1

[16] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019.

1

[17] Yijian Qin, Ziwei Zhang, Xin Wang, Zeyang Zhang, and

Wenwu Zhu. Nas-bench-graph: Benchmarking graph neural

architecture search. Advances in neural information process-
ing systems, 35:54–69, 2022. 2

[18] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial
intelligence, pages 4780–4789, 2019. 4

[19] Han Shi, Renjie Pi, Hang Xu, Zhenguo Li, James Kwok, and

Tong Zhang. Bridging the gap between sample-based and

one-shot neural architecture search with bonas. Advances
in Neural Information Processing Systems, 33:1808–1819,

2020. 1

[20] Chen Wei, Chuang Niu, Yiping Tang, Yue Wang, Haihong

Hu, and Jimin Liang. Npenas: Neural predictor guided evo-

lution for neural architecture search. IEEE Transactions on
Neural Networks and Learning Systems, 34(11):8441–8455,

2022. 1, 4

[21] Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Ben-

der, and Pieter-Jan Kindermans. Neural predictor for neural

architecture search. In Proc. of ECCV, 2020. 1

[22] Jason Weston, Samy Bengio, and Nicolas Usunier. Wsabie:

Scaling up to large vocabulary image annotation. In Twenty-
Second International Joint Conference on Artificial Intelli-
gence. Citeseer, 2011. 1, 2

[23] Colin White, Willie Neiswanger, and Yash Savani. Bananas:

Bayesian optimization with neural architectures for neural

architecture search. In Proceedings of the AAAI conference
on artificial intelligence, pages 10293–10301, 2021. 1, 4

[24] Junru Wu, Xiyang Dai, Dongdong Chen, Yinpeng Chen,

Mengchen Liu, Ye Yu, Zhangyang Wang, Zicheng Liu, Mei

Chen, and Lu Yuan. Stronger nas with weaker predictors.

Advances in Neural Information Processing Systems, 34:

28904–28918, 2021. 4

[25] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and

Hang Li. Listwise approach to learning to rank: theory and

algorithm. In Proc. of ICML, 2008. 1

[26] Yixing Xu, Yunhe Wang, Kai Han, Yehui Tang, Shangling

Jui, Chunjing Xu, and Chang Xu. Renas: Relativistic evalu-

ation of neural architecture search. In Proc. of CVPR, 2021.

1

[27] Shen Yan, Kaiqiang Song, Fei Liu, and Mi Zhang. Cate:

Computation-aware neural architecture encoding with trans-

formers. In International Conference on Machine Learning,

pages 11670–11681. PMLR, 2021. 1

[28] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,

Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards

reproducible neural architecture search. In Proc. of ICML,

2019. 2

[29] Shenghe Zheng, Hongzhi Wang, and Tianyu Mu. Dclp: Neu-

ral architecture predictor with curriculum contrastive learn-

ing. In Proc. of AAAI, 2024. 1

