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In this document, we first provide additional implemen-
tation details of our OcRFDet (Sec. 1). We then present ex-
tensive comparison experiments (Sec. 2), ablation studies
(Sec. 3), and qualitative results (Sec. 4) to further validate
the effectiveness of our method. Finally, we discuss the lim-
itations of our approach and provide insights into potential
future research directions (Sec. 5).

1. More Implementation Details

We implement the OcRFDet with PyTorch [12] under
the framework MMDetection3D [3]. On the nuScenes
validation dataset, we employ a 60-epoch training
scheme, and use the AdamW optimizer [5] with the batch
size set to 32 under 4 x RTX 3090 GPUs. The learning rate
of the detector is initialized at 2 x 10~ while the learn-
ing rate of radiance fields is set to 4 x 10~* with a decay
applied every one epoch. Following the baseline, we adopt
the default data augmentation techniques. On the nuScenes
test dataset, we employ 60-epoch training schemes with
the batch size set to 8 under 8 x RTX 3090 GPUs.

2. More Comparison Experiments

More results on the Waymo dataset. We further vali-
date the effectiveness of our method on the Waymo Open
dataset [13]. As shown in Tab. 1, our method, using BEV-
Former as the baseline, shows consistent improvements on
Waymo-full and Waymo-mini about the LET-mAPL and
LET-mAPH metrics [6]. Specifically, for the Waymo-full,
our method achieves 37.1% LET-mAPL and 51.3% LET-
mAPH, which outperforms BEVFormer by 2.1 pp w.r.t.
LET-mAPL and 4.2 pp w.r.t. LET-mAPH, and the state-
of-the-art method VectorFormer [2] by 0.3 pp w.r.t. LET-
mAPL and 2.2 pp w.r.t. LET-mAPH. Moveover, for the
Waymo-mini, our method also consistently achieves better
results towards the baseline and the state-of-the-art method
MvACon [10]. These results further demonstrate the effec-
tiveness of our OcRFDet.
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Experiments of other image encoders. To further verify
the effectiveness of our OcRFDet, we validate our method
with small-sized backbone ResNet-18 [4] and large-sized
backbone SwinTransformer-base [11] at the same image
resolution of 256 x 704. As shown in Tab. 2, when us-
ing ResNet-18 as the image backbone, our method achieves
32.9% mAP and 39.5% NDS, outperforming our baseline
DualBEV by 1.2 pp w.r.t. mAP and 1.8 pp w.r.t. NDS;
when using SwinTransformer-base as the image backbone,
our method achieves 37.4% mAP and 41.8% NDS, outper-
forming DualBEV by 1.5 pp w.r.t. mAP and 1.7 pp w.r.t.
NDS. These results demonstrate the effectiveness of our
OcRFDet with different backbones.

Comparison of efficiency. We compare the running
time, computation cost, and parameter size of the baseline
method and our OcRFDet. As shown in Tab. 3, we find
that our OcRFDet brings significant improvements by 1.6
pp w.r.t. mAP and 0.9 pp w.r.t. NDS with only a minimal
increase in computational cost. These results demonstrate
our method is friendly to applications.

Comparison at different depths. Following [1], we cat-
egorize annotation and prediction ego distances into three
groups: Near (0-20m), Middle (20-30m), and Far (>30m).
As shown in Tab. 4, compared to the baseline method (Du-
alBEV), our OcRFDet consistently improves performance
across all depth ranges. These results indicate our geomet-
ric feature enhancement method based on radiance fields is
effective across all depth ranges.

Comparison at small-sized objects. To evaluate the effec-
tiveness of our method for small-sized object detection, we
conduct experiments on the nuScenes validation dataset, fo-
cusing on normal-sized objects at a far distance (>30m) and
small-sized objects at a near distance (0-20m). In this con-
text, cars are considered normal-sized objects, while pedes-
trians, motorcycles, and bicycles are categorized as small-
sized objects. As shown in Tab. 5, our method consistently
outperforms the baseline DualBEV for the aforementioned
small objects. These results indicate that our geometric fea-
ture enhancement based on radiance fields significantly im-
proves detection performance for small objects.



Table 1. Comparisons on the Waymo Open dataset.

. Waymo-full Waymo-mini
Methods Backbone  BEVsize - b TETmAPH T | LELmAPL T LETmAPH |
BEVFormer [9] 35.0 47.1 349 46.3
MvACon [10] - - 35.7 475
VoctorFormer [2] | ResNet-101 200200 36.8 49.1 - ;
BEVFormer + Ours 37.1 51.3 37.3 48.5

Table 2. Experiments of OcRFDet with other image backbones on the nuScenes validation set.

Methods Backbone mAP1T NDS1 | mATE] mASE|l mAOE] mAVE] mAAE|
DualBEV [8] ResNet-18 31.7 37.7 0.681 0.294 0.614 0.933 0.256
OcRFDet (Ours) ResNet-18 329 39.5 0.661 0.272 0.616 0.907 0.240
DualBEV [8] SwinT-Base 35.9 40.1 0.677 0.269 0.534 0.993 0.312
OcRFDet (Ours) | SwinT-Base 374 41.8 0.648 0.266 0.513 0.978 0.418

Table 3. Comparisons of running time, computation cost, and parameter size. For a fair comparison, the running speed of the comparison

method is evaluated on one RTX 3090 with a batch size of 1.

Methods Frames mAP 1 NDS 1 Running Times (FPS) FLOPs (G) Parameters (M)
DualBEV [8] 1 35.2 425 10.7 291.51 82.86
OcRFDet (Ours) 1 36.8 43.4 8.9 302.61 83.62
DualBEV [8] 2 38.0 50.4 8.2 303.05 83.38
OcRFDet (Ours) 2 40.0 50.9 6.3 314.17 84.14

Table 4. Comparisons at different depths on nuScenes
validation set. The numbers are mAP/NDS.

Methods Near Middle Far
DualBEV [8] 55.5/53.2 26.5/37.4 9.8/25.4
OcRFDet (Ours) 56.8/53.7 28.3/38.3 10.2/25.9

Table 5. Comparisons at small-sized objects on the nuScenes
validation set. The numbers are AP.

>30m 0-20m
Methods Car | Pedestrian Motorcycle Bicycle
DualBEV [8] 232 55.6 53.2 48.6
OcRFDet (Ours) | 24.7 55.8 54.7 49.2

3. More Ablation Studies

Effectiveness of cross-attention fusion. As shown in Fig.
6, among the evaluated strategies, cross-attention fusion
achieves the highest detection performance of 35.5% mAP
and 42.2% NDS, outperforming the other strategies. We
think that, compared to linear fusion (weighted mean) or
equal-weight fusion (concatenation and convolution), cross-
attention fusion further captures more fine-grained associ-
ations between the two fields we used, effectively lever-
aging geometric information. These results demonstrate
that cross-attention enables more effective geometry inter-
actions, leading to detection performance improvements.

Effectiveness of multi-scale height slice attention. As

Table 6. Ablation studies of the strategy of opacity fusion.

Strategy mAP 1 NDS +
Weighted Mean 35.3 41.9
Concatenation and Convolution 35.0 42.0
Cross Attention 35.5 42.2

Table 7. HOA gains on Car under different scene IDs (AP).

Methods ID: €809---eb64 ID:3dd2---6a0a | Allscene
DualBEV + OcRF 44.6 66.1 59.0
+HOA 44.710-1 67.711:6 59.8108

shown in Tab. 8, when we progressively introduce multi-
scale integration and BEV mask prediction into HSA, the
detection performance improves step by step. These results
demonstrate the rationality and effectiveness of our multi-
scale height slice attention.

Gains of HOA The gains of HOA depend on scene com-
plexity. As shown the Tab. 7, scene e809- - - eb64 has only
one object category (Car), yielding limited improvement
(+0.1). In contrast, scene 3dd2--- 6a0a contains seven di-
verse object types, enabling better use of height-wise dis-
tinctions and resulting in a larger gain (+1.6) on Car. This
shows HOA is more effective in complex scenes.
Effectiveness of random-view rendering. As shown in
Tab. 9, we conduct ablations to validate the rationality
of randomly selecting a single viewpoint for rendering.
Specifically, when rendering all six viewpoints, we find that
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Figure 1. Comparison of detection results in the BEV space on the nuScenes validation set. We show the ground truth boxes in green,
and the prediction boxes in blue. We use red rectangles to highlight the comparisons of ours and DualBEV.

Table 8. Ablation studies of multi-scale height slice attention.

HSA Multi Scale BEV Mask | mAP{ NDS 1
v 352 42.0
v v 353 42.1
v v v 35.5 42.2

the detection performance achieves 34.5% mAP and 41.7%
NDS, with no significant improvement. When rendering
four fixed viewpoints (FRONT, FRONT_LEFT, BACK, and
BACK_RIGHT), the computational cost is reduced, but the
detection performance drops by 0.1 pp w.r.t. mAP and 0.3
pp w.r.t. NDS. When rendering four random viewpoints, the
detection performance improves by 0.3 pp w.r.t. mAP and
0.3 pp w.r.t. NDS. Furthermore, as fewer viewpoints are
randomly selected for rendering, the detection performance
further improves, and the computational cost progressively
decreases. We analyze these results as follows: Rendering
all six viewpoints focuses the network’s optimization on the
radiance fields, limiting the optimization of the detection
network while incurring high computational costs. Render-
ing randomly selected viewpoints ensures that all six view-
points are rendered throughout the training process, making
it more beneficial for detection compared to rendering the
same number of fixed viewpoints. Finally, to balance detec-
tion performance and computational efficiency, we identify
that randomly rendering a single viewpoint is optimal.

Table 9. Ablation studies of rendering view selection.

. GPU Memory Training Time of
View mAP - NDS (G) Each Iteration (s)
6 345 417 239 0.744
4 (Fixed) | 344 414 19.2 0.625
4 (Random) | 34.7 41.7 19.2 0.635
2 (Random) | 34.7 42.1 16.9 0.527
1 (Random) | 35.0 41.9 12.5 0.459

4. More Qualitative Results

We further compare the qualitative results of DualBEV and
ours in the BEV space on the nuScenes validation set.
As shown in Fig. 1, in the left column, our method shows
a more accurate location of the predicted boxes for the dis-
tant objects. In the middle column, our method success-
fully obtains the detection boxes for occluded objects. In
the right column, our method produces fewer false positive
boxes. These results further demonstrate the superiority of
our OcRFDet.

5. Limitation and Future Work

While our object-centric radiance fields effectively enhance
foreground objects and suppress background noise, the
learning process is heavily dependent on the quality of an-
notations. This leads to two interrelated constraints: (1)
Critical foreground instances that lack 3D box labels (e.g.,



traffic lights in the nuScenes dataset) may be inadvertently
suppressed during feature enhancement, which limits the
applicability of our method in open environments. (2) In-
accurate 3D box labels in the training data could lead our
method to unintentionally amplify background features that
should have been suppressed.

Future work will explore leveraging prompts as priors in
open-set datasets to preserve important yet unlabeled fore-
ground object features, while addressing label noise through
temporal consistency constraints in dynamic scenes. In ad-
dition, as more advanced U-Net architectures [7] continue
to emerge, we envision integrating them to further refine the
opacity-based attention mechanism.
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