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A. Overview
In this document, we provide additional technical details,
extended experimental results, and further discussions that
complement and elaborate upon the material in the main
paper. Specifically, Section B offers a detailed description
of our implementation, covering the training of both the
motion diffusion model and the tracking policy, as well as
clarifications on reproducing the baseline methods. In Sec-
tion C, we present additional experiments—including abla-
tion studies—and describe the evaluation metrics in greater
depth. We also explore how our approach generalizes to
other settings, illustrate further results with additional visu-
alizations, and discuss findings from our user study. Finally,
Section D lists extended failure cases of our method and
offers insight into potential directions for future research.
Through this supplementary material, we aim to provide a
more comprehensive view of our approach, offer clarity on
the nuances of the methodology, and furnish evidence of its
robustness and versatility.

B. Supplementary Implementation Details
B.1. Details of Motion Diffusion Training
Scheduled training. To enhance stability and generaliza-
tion of auto-regressive models, we use the scheduled train-
ing strategy [3, 48, 68, 73] to progressively supervise the
training process with current sampling distribution. The in-
teraction denoising network is trained on sequences of N
interaction windows by integrating its own full-sampling

predictions into the interaction history. Instead of always
relying on the ground-truth data for past motion sequences,
we substitute in the model’s own earlier prediction. This
approach let the model encounter an inference-time distri-
bution, such as previously unseen interactions or unconven-
tional combinations of actor states and text prompts.

To ease the transition to these more challenging scenar-
ios, we adopt a three-phase training schedule:
• Fully Supervised Phase. The model is initially trained

using only ground-truth motion history.
• Mixed Training Phase The ground-truth history is grad-

ually replaced by rollout history with a probability that in-
creases linearly from 0 to 1, allowing the model to slowly
adjust to relying on its own outputs.

• Rollout Training Phase Finally, the model is trained ex-
clusively using the sampled inteaction history.

In practice, we train each stage for 100K iteration steps and
set the consecutive window number N = 3. The training
algorithm is shown in Alg. 2.

B.2. Details of Reaction Policy Training
Actor-aware Reaction Policy Policy observations in-
clude generated and captured actor motion to adjust origi-
nal imitation rewards and prevent interpenetration. The dis-
tances of every joint’s positions are summed to get the adap-
tive weight w(ŷ, yreal), we use a linear interpolate between
goal rewards depending on synthesis and realistic data. The
rewards based on real action yreal are the imitation reward
at default joint position and root distance reward up to 1,
these rewards tend to keep the reactor away from the unpre-
dictable actor,

r(s, a,s′, x̂, ŷ, yreal) = (1− w(ŷ, yreal)) ∗ rPHC(s, a, x̂)

+ w(ŷ, yreal) ∗ (rdefault(s, a) + rroot(s, yreal)),
(10)

where rPHC(sn, x̂n) is the reward components of PHC in
full-motion imitation.

The imitation reward rPHC proposed by PHC refers to
0.5rg +0.5ramp + renergy. The weight w(ŷ, yreal) is derived
from the cosine similarity SC of 24 SMPL joints at frame i,
then:

w(ŷ, yreal) =
1

2
(1− 1

T

∑T

i=1
SC(ŷi, y

real
i )) (11)

Once the prediction and capture conflict, w increases and
the policy prioritizes higher rewards from the terms rdefualt+

rroot. rdefualt = 0.5e−100∥px
i −pi∥, representing the imita-

tion reward with the average standing or walking motion x



Algorithm 2 Scheduled training for auto-regressive inter-
action diffusion

1: Input: denoiser Gθ with parameters θ, reactor dat-
aloader X , actor dataloader Y , text dataloader C, to-
tal diffusion steps T , consecutive window number N ,
optimizer O, training loss L, max iteration Imax, auto-
regressive interaction sampler S.

2: iter ← 0
3: while iter < Imax do
4: [x0,x1, ...,xN ] ∼ X , [y0,y1, ...,yN ] ∼ Y
5: ▷ sample N interaction windows from dataset
6: Z ← {CANONICALIZE(x0,y0)}
7: ▷ initialize interaction history
8: for i← 1 to N do ▷ number of rollouts
9: zi0 ← CANONICALIZE(xi,yi)

10: t ∼ U [0, T )
11: zit ← FORWARD DIFFUSION(zi0, t)
12: ci ← COLLECT(C), zi−1 ← COLLECT(Z)
13: ẑi0 = Gθ(zit, zi−1, t, ci)
14: ▷ next interaction denoising
15: ∇ ← ∇θL(zi0, ẑi0, zi−1)
16: θ ← O(θ,∇) ▷ back propagation
17: p← SCHEDULE PROBABILITY(iter, Imax)
18: ▷ sample schedule training probability
19: if rand() > p then
20: ziT ← FORWARD DIFFUSION(zi0, T )
21: ▷ maximum noising
22: ẑi0 = S(Gθ, ziT , zi−1, T, ci)
23: ▷ full sampling loop
24: x̂i

0 = RECOVER(ẑi0)
25: z̃i0 = CANONICALIZE(x̂i

0,y
i)

26: Z ← Z ∪ z̃i0
27: ▷ set predicted reaction into history
28: else
29: Z ← Z ∪ zi0
30: ▷ use dataset interaction history
31: end if
32: iter ← iter + 1
33: end for
34: end while

as its goal (p: joint position). While rroot penalizes root
proximity to the actor, with no reward given beyond 0.4
meters: max(∥prealroot,i − proot,i∥, 0.4). All the above pro-
cess based on the precise capture for real actors. For noisy
captures, we add slight noise to the real actor motion dur-
ing policy training and simulate huge observation noises via
mismatching generated actor and captured actor sequences.
While domain randomization cannot fully erase every pos-
sible noise without additional observation modalities (e.g.,
inertial measurement units).

C. Additional Experiments and Results

C.1. Evaluations on InterHuman dataset

On the InterHuman dataset as shown in Tab 4, our method
shows a slight decline in Divcd compared to CAMDM. We
attribute this to the actor’s movements constraining the reac-
tor’s actions: the incorporation of Interaction Loss reduces
the distance between the actor and reactor to encourage con-
tact. In contrast, CAMDM treats the actor as a conditioning
factor, imposing fewer restrictions on the reactor’s move-
ments. More details about experiments within online text-
guided reaction setting can be found in C.3.

C.2. Details of Evaluation Metrics

The evaluation framework for synthesized reactor se-
quences encompasses three principal dimensions: (1) FID,
Diversity and Multimodal Distance (MMDist) for Reaction
Quality, which assesses the reactor’s motion independently
of the actor, following[14, 58]; (2) Penetration, Floating
and Skating for Physical Plausibility, which evaluates the
adherence of the reactor’s motion to physical constraints,
following[59, 69]; and (3) Interpenetration Volume (IV),
FIDcd and Divcd for Interaction Quality which examines
the realism of interactions between the actor and the reactor,
following[36, 52]. All the motion and text features are ex-
tracted with the pretrained checkpoints in [14]. The metrics
are defined in detail as follows.

FID. Frechet Inception Distance (FID) is a widely
adopted metric for quantifying the quality of generated mo-
tion by measuring the statistical divergence between feature
distributions of real and synthesized samples. It evaluates
the fidelity of synthesized motion sequences by comparing
their latent-space representations to those of ground-truth
motion data.

Diversity. Diversity measures the variance of action cate-
gories across all generated motion sequences. Specifically,
we sample two subsets of motion sequences, each contain-
ing the same number of samples Sd from the set of gen-
erated motion sequences across all action categories, de-
noted as {v1, ...,vSd

} and
{
v′
1, ...,v

′
Sd

}
. The diversity

of the generated motions is then defined as Diversity =
1
Sd

∑Sd

i=1 ∥vi − v′
i∥2. In our experiments, we set Sd = 200.

As the diversity of the generated motions approaches that of
the real dataset, the generated motions exhibit greater diver-
sity, leading to improved alignment with real-world motion
distributions.

MMDist. Multimodal Distance (MMDist) evaluates the
alignment fidelity between generated motion features and



Methods Reaction Physics Interaction

FID↓ Div.→ MMDist. ↓ Pene. ↓ Skat.↓ Float. ↓ IV ↓ FIDcd ↓ Divcd →
Ground Truth 0.008 3.865 4.306 0.000 0.032 21.273 0.045 0.532 9.109

InterFormer [8] 9.475 2.645 10.893 1.113 1.021 37.927 0.354 5.734 5.302
InterGen [32] 6.379 3.033 7.881 0.266 0.279 23.398 0.210 3.101 6.414
ReGenNet [66] 2.257 3.459 5.754 0.427 0.396 24.804 0.169 1.733 7.485
CAMDM [7] 2.166 4.161 6.212 0.296 0.177 24.261 0.341 3.701 8.269

Human-X 1.995 3.767 5.638 0.216 0.048 22.165 0.106 1.582 7.754
Human-X* 2.350 3.245 6.071 0.064 0.008 12.026 0.134 1.634 7.015

Table 4. Action-to-Reaction with online unconstrained reaction setting on InterHuman[32] dataset. A higher or lower value is better for
↑ or ↓, and → means the value closer to ground truth is better. * denotes the method with the physics tracker

their corresponding text features by measuring the aver-
age Euclidean distance. Formally, given N paired motion-
text samples, we extract motion and text features using
pretrained extractors, denoted as fmotion

i and f text
i re-

spectively. The MMDist is computed as: MMDist =
1
N

∑N
i=1

∥∥fmotion
i − f text

i

∥∥
2
, where lower MMDist indi-

cates that the generated motion aligns more closely with the
textual description.

Penetration, Floating and Skating. Penetration mea-
sures the distance between the lowest body mesh vertex be-
low the ground and the ground surface, assessing whether
the character exhibits ground penetration. Floating com-
putes the distance between the lowest body mesh ver-
tex above the ground and the ground surface, evaluating
whether the character is unnaturally floating. Skating iden-
tifies foot joints that maintain ground contact across con-
secutive frames and calculates their average horizontal dis-
placement, assessing the presence of foot sliding artifacts.

Interpenetration Volume. Interpenetration Volume (IV)
measures the collision volume between the meshes of the
actor and reactor, serving as a penalty term to discourage
mesh interpenetration and unintended collisions between
the two entities.

FIDcd and Divcd. In every frame, we select 10 key joints
for both the actor and the reactor, chosen from the com-
plete set of available joints. The selected joints encompass
the pelvis, knees, feet, shoulders, head, and two wrists. A
matrix M ∈ R10×10 is then constructed based on the pair-
wise distances between the selected joints of the two agents,
serving as the interactive feature. Based on this represen-
tation, we compute the FIDcd and Divcd, which are used to
supervise and assess the interaction quality between the two
characters.

C.3. Additional Experiments on Diffusion Planner
In the online text-guided reaction setting, we also conduct
experiments on the Inter-X and InterHuman datasets, evalu-
ating performance across three key dimensions: Reaction
Quality, Physical Plausibility, and Interaction Quality, as
shown in Tab. 5 and 6. Unlike the experiments in the uncon-
strained reaction setting, we exclude InterFormer from the
baselines since it does not support text-conditioned inputs.
The results demonstrate that our approach outperforms pre-
vious baselines across all metrics, achieving state-of-the-
art performance. Incorporating text supervision enables the
generation of diverse and fine-grained human motion se-
quences, allowing for detailed customization based on the
provided descriptions, while also leading to slight improve-
ments in various evaluation metrics. However, it is note-
worthy that even without textual input, our model already
achieves strong performance. Although the inclusion of text
information enhances the results, the overall improvement
is relatively modest. This indicates that the model remains
robust and effective even in the absence of additional textual
guidance.

In additional ablation studies, we conduct experiments
on four aspects: motion representation, the size of binary
interaction field In, numbers of the decoder layers llayers
and text encoder. All experimental results are presented in
Tab. 7.

Representation. Similar to InterGen[32], we attempt to
use a non-canonical representation for multi-person inter-
action motion. However, experimental results show a per-
formance degradation across all metrics, with a particularly
significant drop in interaction-related metrics. This perfor-
mance degradation is primarily due to the fact that the non-
canonical representation encodes features in the global co-
ordinate system. In contrast, our approach defines the coor-
dinate origin at the root joint of the reactor and represents
motion in a relative coordinate system. This relative formu-



Methods Reaction Physics Interaction

FID↓ Div.→ MMDist. ↓ Pene. ↓ Skate. ↓ Float. ↓ IV ↓ FIDcd ↓ Divcd →
Ground Truth 0.002 6.028 3.524 0.000 0.023 7.956 0.024 0.235 11.471

InterGen [32] 5.211 4.498 6.070 0.257 0.136 11.319 0.256 3.265 8.867
ReGenNet [66] 2.101 5.096 4.973 0.134 0.112 9.320 0.207 1.853 9.359
CAMDM [7] 1.359 5.676 5.052 0.145 0.121 9.371 0.138 1.982 9.140

Human-X 0.926 5.951 3.909 0.112 0.087 8.218 0.072 1.607 9.822

Table 5. Action-to-Reaction with online text-guided reaction setting on Inter-X [65] dataset, where a higher or lower value is better for ↑
or ↓, and → means the value closer to ground truth is better.

Methods Reaction Physics Interaction

FID↓ Div.→ MMDist. ↓ Pene. ↓ Skat. ↓ Float.↓ IV ↓ FIDcd ↓ Divcd →
Ground Truth 0.008 3.865 4.306 0.000 0.032 21.270 0.045 0.532 9.109

InterGen [32] 6.060 3.366 7.486 0.253 0.265 22.221 0.200 2.946 6.549
ReGenNet [66] 2.144 3.621 5.466 0.406 0.376 23.560 0.161 1.646 7.566
CAMDM [7] 2.058 4.043 5.901 0.281 0.168 23.047 0.324 3.516 8.311

Human-X 1.889 3.807 5.356 0.205 0.046 21.052 0.101 1.513 8.384

Table 6. Action-to-Reaction of online text-guided reaction setting on InterHuman [32] dataset, where a higher or lower value is better
for ↑ or ↓, and → means the value closer to ground truth is better.

lation facilitates learning the spatial relationships between
the two characters, whereas the global representation makes
it substantially more challenging for the model to capture
these interactions effectively.

When removing binary interaction field I and angular
velocity of the roots ṙy , temporal difference of the local
joint positions ṗy separately, the model’s ability to learn
the authenticity of motion interaction and the temporal co-
herence between consecutive frames decreases, which nat-
urally leads to a degradation in generation quality. How-
ever, introducing 6D representation of the joint rotations θy

also results in performance degradation. This is because θy

does not contribute to the model’s understanding of the in-
teraction between the two characters; instead, the inclusion
of such redundant information hinders the model’s compre-
hension ability.

I Field Size. The size of the binary interaction field I
refers to the number of joints selected in the contact map.
When only the pelvis joint is selected, I fails to be effec-
tive, as the pelvis itself rarely engages in contact. On the
other hand, selecting all 22 joints achieves the best perfor-
mance on most metrics but introduces significant computa-
tional latency. Therefore, we ultimately select the six most
critical joints, including the pelvis, head, both ankles, and
both wrists, to ensure interaction quality while minimizing

computational overhead.

Num of llayers. We conduct experiments with 2, 4, 8, and
16 decoder layers and ultimately select 8 layers as the final
choice, as it demonstrated the best overall performance.

Text Encoder. In ablation study, we attempt to use CLIP
as the text encoder. As stated in CLOSD[59], CLIP[47]
tends to focus on understanding image descriptions. Al-
though it outperforms DistilBERT[51] in MMDist, it per-
forms slightly worse on other metrics. Therefore, we ulti-
mately adopt DistilBERT as the text encoder.

C.4. Additional Experiments on Reaction Policy

In this section, we present additional experimental results
on the Inter-X dataset, comparing our actor-aware reaction
policy with the baseline method PHC[38]. The results are
shown in Tab. 8. IV stands for interpenetration volume and
other metrics following PHC. During inference, we disable
the inter-actor collision avoidance in simulation, otherwise,
the interpenetration volume (IV) will constantly be zero.
Our method achieves a significant reduction in interpene-
tration volume and a notable improvement in success rate,
while maintaining comparable performance in other met-
rics. This demonstrates that our actor-aware reaction policy



Class Settings Reaction Physics Interaction Latency

FID↓ Div.→ MMDist. ↓ Pene. ↓ Skat. ↓ Float. ↓ IV ↓ FIDcd ↓ Divcd → (ms)

Ground Truth 0.002 6.028 3.524 0.000 0.023 7.956 0.024 0.235 11.471 -

Representation

non-canonical 2.032 6.285 4.278 0.129 0.131 8.814 0.083 5.737 7.853 10.2
w.o. I 1.108 5.842 4.235 0.121 0.095 8.689 0.078 3.542 8.423 13.1
w.o. ṙy and ṗy 1.044 5.617 4.259 0.125 0.094 8.712 0.080 2.389 9.168 12.8
add θy 1.363 5.956 4.116 0.117 0.089 8.634 0.075 1.864 9.705 15.0

I Field Size
1× 1 1.095 5.945 4.305 0.133 0.102 8.916 0.087 1.802 9.223 11.9
10× 10 0.979 6.092 4.153 0.119 0.094 8.667 0.077 1.701 9.781 13.9
22× 22 0.982 6.067 4.118 0.121 0.089 8.650 0.069 1.697 9.399 15.1

Num of llayers
2 2.729 5.611 4.222 0.124 0.096 8.701 0.079 1.827 7.952 3.8
4 1.379 5.868 4.117 0.118 0.093 8.654 0.076 1.734 9.538 7.2
16 1.007 5.935 4.183 0.121 0.094 8.677 0.078 1.705 9.654 25.5

Text Encoder CLIP[47] 1.023 6.100 4.073 0.120 0.095 8.680 0.079 1.712 9.652 13.6

Human-X 0.975 6.063 4.115 0.118 0.092 8.650 0.076 1.694 9.735 13.6

Table 7. Additional ablation studies with online reaction settings on the Inter-X[65] dataset, where a higher or lower value is better for ↑
or ↓, and → means the value closer to ground truth is better.

Methods IV↓ Succ↑ Empjpe ↓ Eacc ↓ Evel ↓
PHC[33] 4.7 84.1% 47.6 11.7 9.1
Ours 1.4 95.6% 37.3 10.5 4.2
Ours-safety 0.05 84.0% 51.7 11.4 10.1

Table 8. Test performance of reaction policy on Inter-X dataset.
(Ours-safety indicates actor-aware policy).

effectively enhances the reactor’s motion quality and inter-
action realism.

C.5. User Study

Metrics Question

Diversity Which interaction leads to a greater variety of reactions?
Consistency Which interaction produces more realistic reactions?
Authenticity Which interaction exhibits more realistic contact?

Table 9. Question settings for user questionnaire.

In order to assess the effectiveness of the proposed
method, we conduct a user study involving 15 participants.
They are asked to complete a questionnaire, with the spe-
cific questions provided in Tab 9. In the first phase of the
experiment, participants are instructed to compare the video
results generated by our method against those produced by
InterGen[32], ReGenNet[66] and the ground truth, based
on three key criteria: Diversity, Consistency, and Authentic-
ity. In the second phase, participants will engage in an im-
mersive interaction with the avatar using a VR headset. Fol-
lowing this experience, they evaluate our method in compar-
ison to CAMDM[7] and select the motion sequence they

Figure 5. Extensive experimental results indicate that participants
perceive our method to perform better in all three metrics: Diver-
sity, Consistency, and Authenticity.

perceive as superior. Each participant is presented with 20
video samples and allocated an average of 30 seconds for
the VR experience, ensuring sufficient exposure to the gen-
erated results before providing their final assessment.

The final results, as presented in Figure 5, demonstrate
that our method achieved the highest approval rate across
all metrics among the participants, reaching state-of-the-art
performance. This result validates that our approach not
only ensures latency-free performance but also maintains
high-quality motion generation.

D. Extended Limitation and Discussions
D.1. Discussion and Future Work
In this work, we introduce a novel auto-regressive frame-
work that seamlessly integrates predictive interaction syn-



thesis with actor-aware physical refinement. Meanwhile,
we integrate our framework into a real-time VR system,
demonstrating its effectiveness in immersive, unconstrained
environments. Through comparative experiments, we iden-
tify considerable areas where our model can be further im-
proved, as outlined below:

Further Memory and Planning. Currently, our model
relies on the past 20 frames to predict the next 40 frames.
However, this short temporal window may result in the
loss of critical historical information. A potential direction
could be leveraging the planning and decision-making ca-
pabilities of Large Language Models (LLMs) to guide the
model[4, 33, 63], allowing it to incorporate a longer tem-
poral context for more informed decision-making and im-
proved generation quality.

Multi-Modal Action and Response. For now, our model
is limited to generating the reactor’s motion based solely on
the actor’s motion and textual input. However, in real-world
scenarios, additional modalities such as audio[26, 61] and
visual cues[11, 21] play a crucial role in motion decision-
making. Developing an interactive system capable of pro-
cessing multimodal inputs and outputs would enhance its
generalizability and expand its potential applications.

Reactive Character Generalizability. The reactor can
be made more diverse. In the future, we can extend its
representation from the SMPL[37] to SMPL-X[43] and
SMPL+H[50], enabling finer-grained control over facial ex-
pressions, hand gestures, and body shape. Additionally, the
reactor can be replaced with humanoid robots[5, 6, 24], lay-
ing the groundwork for real-world deployment.

Various Interaction Context. Although we have
achieved real-time interaction between two individuals,
real-time interaction among multiple participants presents a
significantly greater challenge. While systems like [4] can
generate interactions between two individuals in specific
scenarios through text-based action control, they lack the
capability for real-time reaction generation. Implementing
real-time, two-person interactions within specific contexts,
or integrating dual participants with object interaction,
remains an area for future exploration.

Customized Reaction Design. In real-life scenarios, in-
dividuals possess distinct personalities, leading to varied re-
sponses to the same action. Inspired by [4], we can assign
personality traits to the reactor in the future, enabling it to
generate personalized responses that cater to users’ individ-
ual needs.


