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6. Diffusion Models

Below, we provide a concise mathematical overview of dis-
crete diffusion models (DMs).

6.1. Diffusion Model Essentials

Let x0 ⇠ p(x0) be a sample from an underlying data distri-
bution. A forward diffusion process iteratively adds Gaus-
sian noise over T discrete timesteps, producing corrupted
samples x1, . . . ,xT . One common choice to model each
step is:
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where �t 2 (0, 1) controls the noise variance. One can
obtain xt directly from the original image x0 given the cu-
mulative effect of t nose-adding steps:
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where ↵t = 1 � �t and ✏ ⇠ N (0, I). As t grows, xt

becomes increasingly noisy; at t = T , the corrupted xT ap-
proximates a pure Gaussian distribution, losing most struc-
ture of x0.

To generate novel samples starting from pure noise,
a diffusion model learns a reverse denoising process
p✓(xt�1 | xt), parameterized by ✓, which conceptually “de-
noises” xt step by step until recovering x0:
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A common training objective is to minimize the distance
between the true noise ✏t and the model’s predicted noise
✏✓(xt, t):
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At inference, sampling proceeds from xT ⇠ N (0, I) and
iteratively applies p✓ to yield a final x0.

6.2. Feature Extraction using Diffusion Models

While diffusion models (DMs) are primarily designed for
image generation from Gaussian noise, our goal is to extract
their learned representations for real images. To achieve
this, we first invert a real image into a noisy state and then
perform the reverse denoising process.

To illustrate the inversion step, we revisit DDIM [49], a
widely adopted sampling approach known for faster genera-
tion and invertibility. A common deterministic formulation
for going from xt to xt�1 is:
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is the predicted clean image.

By removing explicit Gaussian noise additions at each step,
the process becomes deterministic, allowing a “mirror pass”
that encodes x0 to xT . If we then use xT as the start of the
usual sampling procedure, we recover the original x0.

We leverage this property by reversing the order of
timesteps, going from xt�1 to xt, starting from x0, and then
running the denoising process on xt to extract features.

While one could alternatively introduce noise into a real
image by selecting a timestep and manually adding noise
via Eq. (6), this approach introduces stochastic variations.
To ensure consistency, we adopt DDIM inversion, leverag-
ing its deterministic nature to repurpose diffusion models
for discriminative tasks.

7. Datasets Description

There are six classification datasets in GEO-Bench [27]:
m-bigearthnet It contains 120 ⇥ 120 images with 43 land
cover classes. The dataset includes 20,000 training samples,
1,000 validation samples, and 1,000 test samples. It consists
of 12 spectral bands obtained from Sentinel-2 imagery, with
a spatial resolution of 10.0m for the RGB channels.
m-brick-kiln It consists of 64 ⇥ 64 images with 2 classes,
focusing on brick kiln detection. The dataset includes
15,063 training samples, 999 validation samples, and 999
test samples. The imagery is derived from Sentinel-2 with
10 spectral bands and a resolution of 10.0m for RGB. Ad-
ditional Sentinel-1 data is included.
m-eurosat It consists of 64 ⇥ 64 images spanning 10 land
cover classes. The dataset contains 2,000 training samples,
1,000 validation samples, and 1,000 test samples. It in-
cludes 13 spectral bands captured from Sentinel-2 with an
RGB resolution of 10.0m.
m-forestnet This dataset contains 332 ⇥ 332 images and
covers 12 classes related to forest monitoring. It includes
6,464 training samples, 989 validation samples, and 993 test
samples. The dataset comprises 6 spectral bands obtained
from Landsat-8, with a spatial resolution of 15.0m for the
RGB channels.
m-pv4ger This dataset comprises 320 ⇥ 320 images cover-
ing 2 classes, with 11,814 training samples, 999 validation



samples, and 999 test samples. The imagery is obtained
from RGB data, with a spatial resolution of 0.1m.
m-so2sat This dataset consists of 32 ⇥ 32 images spanning
17 different land cover classes. It contains 19,992 training
samples, 986 validation samples, and 986 test samples. The
images are derived from Sentinel-2 data with 13 spectral
bands and a spatial resolution of 10.0m for RGB.

In addition, six semantic segmentation datasets are in-
cluded:
m-pv4ger-seg It is the segmentation variant of m-pv4ger,
containing 320 ⇥ 320 images with 3,000 training samples,
403 validation samples, and 403 test samples. The dataset
has 3 spectral bands (RGB) with a spatial resolution of
0.1m.
m-nz-cattle It contains 500 ⇥ 500 images with 2 classes,
including 524 training samples, 66 validation samples, and
65 test samples. The imagery consists of 3 spectral bands
(RGB) with an unknown spatial resolution.
m-NeonTree It includes 400 ⇥ 400 images with 2 classes,
consisting of 270 training samples, 94 validation samples,
and 93 test samples. The dataset comprises 5 spectral bands
(RGB + Hyperspectral + Elevation).
m-cashew-plantation It comprises 256 ⇥ 256 images with
7 classes, featuring 1,350 training samples, 400 validation
samples, and 400 test samples. The imagery is sourced from
Sentinel-2 with 10 spectral bands and an RGB resolution of
10.0m.
m-SA-crop-type This dataset consists of 256 ⇥ 256 images
with 10 classes. It contains 3,000 training samples, 1,000
validation samples, and 1,000 test samples. The imagery is
sourced from Sentinel-2 with 10 spectral bands and an RGB
resolution of 10.0m.
m-chesapeake-landcover This dataset consists of 256 ⇥
256 images with 7 land cover classes. It contains 3,000
training samples, 1,000 validation samples, and 1,000 test
samples. The dataset includes 4 spectral bands (RGBN)
with a spatial resolution of 1.0m.

8. Evaluation Details

We provide additional details regarding the evaluation pro-
cess in this section

For task training criteria, we utilize
nn.CrossEntropyLoss() from the PyTorch library
for all tasks, except for the m-bigearthnet dataset,
which follows a multi-label classification setup and
nn.BCEWithLogitsLoss() is applied.

Regarding training schedules, all models are trained for
60 epochs on the m-cashew-plantation and m-sa-crop-type
datasets, while the remaining datasets undergo training for
40 epochs.

Additionally, we apply data augmentation techniques for
all datasets to enhance model generalization. During train-
ing, images undergo random horizontal flipping, vertical

flipping, and color jittering based on a probabilistic thresh-
old of 0.5.

9. Visualizations of Global Weighting

In Sec. 4.4, we demonstrate that features from different
blocks and timesteps contribute differently depending on
the dataset. Our global weighted fusion method effectively
aggregates these features to enhance performance. Fig. 7 vi-
sualizes the learned weight distributions across blocks and
timesteps at different scales, illustrating how our fusion
strategy dynamically adjusts feature importance for each
dataset. This automated weighting helps reduce the need
for manual feature selection, promoting adaptive and opti-
mal feature integration.

(a) Weight allocations for m-chesapeake-landcover dataset.

(b) Weight allocations for m-pv4ger-seg dataset.

(c) Weight allocations for m-NeonTree dataset.

Figure 7. Normalized weight allocations in Global Weighted Fu-
sion across different datasets.


