
A. Additional Analysis
A.1. Visual Encoder Analysis
Visual encoder comparison. As summarized in Tab. A1,
we benchmark a diverse collection of visual foundation
models spanning two supervision paradigms. Semantic-
aligned encoders, such as DeiT III [60], CLIP [46], and
DINOv2 [43], are trained on image-level objectives to
learn high-level semantic representations. For instance,
CLIP aligns vision and language through contrastive learn-
ing, while DINOv2 learns robust self-supervised features
from massive unlabeled datasets. In contrast, spatial-
aligned models leverage pixel-level supervision to cap-
ture fine-grained geometry and detail. This category in-
cludes models for monocular depth estimation (Depth Any-
thing [79, 80]), semantic segmentation (SAM [31, 47]),
dense 3D reconstruction (DUSt3R [66] and MASt3R [33]),
and self-supervised image reconstruction (MAE [18]). SD-
VAE [48], the compact and efficient variational autoencoder
from the Stable Diffusion [48] pipeline, also falls into this
category.

Encoder Supervision Dataset Arch.
Semantic-aligned
DeIT III [60] Classification ImageNet-22k ViT-B/16
CLIP [46] Language WIT-400M ViT-B/16
DINOv2 [43] Image feature LVD-142M ViT-B/14

Spatial-aligned
Depth Any. [79] Depth MIX-14 ViT-B/14
Depth Any. V2 [80] Depth MIX-13 ViT-B/14
SAM [31] Segmentation SA-1B ViT-B/16
SAM 2 [47] Segmentation SA-V Hiera [49]
DUSt3R [66] Point regression MIX-8 ViT-L/16
MASt3R [33] Point matching MIX-14 ViT-L/16
MAE [18] Pixel ImageNet-1k ViT-B/16
SD-VAE [48] Pixel OpenImages CNN

Table A1. Overview of investigated visual foundation models.

As shown in Fig. 7 of the main paper and detailed
in Tab. A2, our evaluation reveals key insights into foun-
dation model effectiveness for 3D reconstruction. Spatial-
aligned encoders consistently outperform semantic-aligned
counterparts across all metrics, achieving higher PSNR
(22.68-23.39 vs. 21.84-22.47 ) and lower LPIPS (0.203-
0.224 vs. 0.227-0.250). This performance gap indicates
that pixel-level supervision provides richer geometric pri-
ors than semantic-level training for 3D reconstruction. We
also observe that model size does not correlate with re-
construction quality. For instance, while large models like
MASt3R [33] (303M) achieve a top-tier PSNR of 23.29 ,
they do so at significant computational cost (73ms). In con-
trast, SD-VAE achieves comparable PSNR while delivering
superior SSIM and LPIPS scores with a model nearly 9→
smaller (34M) and 30% faster inference (51ms). SD-VAE
emerges as the Pareto-optimal choice, delivering the
best reconstruction quality and computational efficiency
among all evaluated encoders. Cross-domain evaluation
demonstrates SD-VAE’s strong generalization: it not only
excels on RealEstate10K but also maintains robust perfor-
mance on challenging out-of-distribution datasets including
outdoor ACID scenes and object-centric DTU views. Based
on its superior accuracy, parameter efficiency, and cross-
domain transfer, we adopt SD-VAE as our default visual
encoder.

Encoder Adaptation Analysis. To assess the potential for
further performance gains, we evaluate the effect of finetun-
ing the SD-VAE encoder, with results detailed in Tab. A3.
Finetuning yields consistent improvements across all sce-
narios, with the gains being most pronounced in cross-
domain generalization. On the challenging DTU dataset,
for instance, performance improves across all metrics
(+0.25 PSNR, +0.011 SSIM, -0.008 LPIPS). These results
demonstrate that encoder adaptation can enhance recon-
struction quality, particularly for out-of-distribution scenar-
ios. However, we choose to keep the encoder frozen to pre-

Encoder Res. Params. Time (s)† RealEstate10K RealEstate10K ↑ ACID RealEstate10K ↑ DTU Overall
PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔

Semantic-aligned
DeIT III [60] 256 86 M 0.053 24.82 0.832 0.156 26.26 0.789 0.186 14.44 0.481 0.393 21.84 0.701 0.245
CLIP [46] 256 86 M 0.051 25.14 0.839 0.151 26.44 0.791 0.184 14.24 0.475 0.415 21.94 0.702 0.250
DINOv2 [43] 224 86 M 0.051 25.74 0.856 0.140 26.90 0.809 0.173 14.77 0.502 0.368 22.47 0.722 0.227

Spatial-aligned
Depth Any. [79] 224 86 M 0.056 26.05 0.863 0.136 27.20 0.817 0.168 14.78 0.491 0.368 22.68 0.724 0.224
Depth Any. V2 [80] 224 86 M 0.054 25.93 0.861 0.137 27.12 0.815 0.169 15.07 0.509 0.360 22.71 0.728 0.222
SAM [31] 256 89 M 0.065 26.39 0.869 0.130 27.79 0.831 0.158 14.95 0.521 0.343 23.04 0.740 0.210
SAM 2 [47] 256 68 M 0.054 26.12 0.865 0.135 27.59 0.826 0.163 14.88 0.505 0.361 22.86 0.732 0.220
DUSt3R [66] 256 303 M 0.073 26.56 0.873 0.129 27.73 0.833 0.158 15.21 0.527 0.342 23.17 0.744 0.210
MASt3R [33] 256 303 M 0.073 26.63 0.876 0.127 27.91 0.837 0.156 15.32 0.552 0.331 23.29 0.755 0.205
MAE [18] 256 86 M 0.051 26.65 0.874 0.127 28.04 0.838 0.154 15.24 0.526 0.344 23.31 0.746 0.208
SD-VAE [48] 256 34 M 0.051 26.50 0.872 0.129 28.16 0.842 0.153 15.21 0.567 0.326 23.29 0.760 0.203

Table A2. Performance comparison across various visual encoders. †: Inference time of the entire network.



PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔
✁ 26.68 0.875 0.126 28.29 0.844 0.152 15.38 0.587 0.317

26.81 0.878 0.125 28.39 0.846 0.151 15.63 0.598 0.309
(+0.13) (+0.003) (-0.001) (+0.10) (+0.002) (-0.001) (+0.25) (+0.011) (-0.008)

Finetuning RealEstate10K RealEstate10K ↑ ACID RealEstate10K ↑ DTU

✂

Table A3. Effect of finetuning the SD-VAE encoder.

Figure A1. Performance scaling during pre-training. H3R exhibits power-law scaling on RealEstate10K, where performance improves
linearly with the logarithm of training steps, similar to scaling patterns observed in large language models [20, 29, 61]. PSNR shows no
signs of saturation even at 1 million training steps, indicating potential for further improvement.

serve pretrained representations and avoid dataset-specific
overfitting. While this prioritizes generalization over peak
performance, encoder adaptation remains a promising av-
enue for future work.

A.2. Training Dynamics
Performance scaling during pre-training. We analyze
the scaling behavior of our model during pre-training on
RealEstate10K, as shown in Fig. A1. The results reveal
a predictable power-law scaling relationship, where per-
formance across all three metrics improves near-linearly
with the logarithm of training steps. This scaling behav-
ior follows the well-documented power-law relationship ob-
served in large language models [20, 29], suggesting that
3D reconstruction models benefit from similar scaling prin-
ciples. Crucially, even after 1 million training steps, the
PSNR curve does not yet show signs of saturation, indi-
cating potential for further improvement. The steady, pre-
dictable scaling suggests that our 3D reconstruction model
benefits from the same fundamental scaling laws that gov-
ern other foundation models, highlighting the value of in-
creased computational investment.
Effect of Exponential Moving Average (EMA). We eval-
uate the impact of applying EMA to model parameters dur-
ing training, with results presented in Tab. A4. EMA sta-
bilizes training by maintaining exponentially weighted av-
erages of model parameters, effectively reducing parame-
ter noise and promoting convergence to more generalizable
solutions. This technique has proven effective across vari-
ous vision tasks, particularly in image generation [48] and

restoration [67]. Our results demonstrate consistent im-
provements across all metrics: PSNR increases by 0.18 ,
SSIM by 0.002, and LPIPS decreases by 0.002. Given these
consistent improvements, we adopt EMA by default in our
final model.

EMA PSNR↓ SSIM↓ LPIPS↔
✁ 27.42 0.889 0.116

27.60 0.891 0.114
(+0.18) (+0.002) (-0.002)✂

Table A4. Effect of EMA on RealEstate10K.

A.3. Input Analysis
Effect of camera pose normalization. We analyze the ef-
fect of camera pose normalization, a common technique
in 3D reconstruction [41, 85] where input poses are trans-
formed to a canonical coordinate frame defined by their
mean pose. As shown in Tab. A5, normalization ex-
hibits contrasting effects across datasets. While normaliza-
tion yields marginal improvements on large-scale, forward-
facing scenes like RealEstate10K and ACID, it significantly
degrades performance on the object-centric DTU dataset,
causing a -0.39 drop in PSNR. We attribute this discrep-
ancy stems from different camera motion characteristics.
In large scenes, normalization stabilizes training by bound-
ing the coordinate space. For object-centric settings, how-
ever, poses are already tightly clustered around the object,
and normalization can amplify small but meaningful po-



Camera pose
normalization PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔

✁ 27.05 0.882 0.121 28.55 0.849 0.145 15.49 0.587 0.314
27.08 0.883 0.120 28.61 0.852 0.144 15.10 0.565 0.319
(+0.03) (+0.001) (-0.001) (+0.06) (+0.003) (-0.001) (-0.39) (-0.022) (+0.005)

RealEstate10K RealEstate10K ↑ ACID RealEstate10K ↑ DTU

✂

Table A5. Effect of camera pose normalization. While camera normalization yields modest improvements on scene-level datasets, it
significantly degrades generalization performance on the object-level DTU dataset.

Encoder Res. RealEstate10K RealEstate10K ↑ ACID RealEstate10K ↑ DTU
PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔

DINOv2 [43] 224 25.74 0.856 0.140 26.90 0.809 0.173 14.77 0.502 0.368
Depth Any. [79] 224 26.05 0.863 0.136 27.20 0.817 0.168 14.78 0.491 0.368
Depth Any. V2 [80] 224 25.93 0.861 0.137 27.12 0.815 0.169 15.07 0.509 0.360

CLIP [46] 224 24.90 0.832 0.155 26.20 0.782 0.189 13.91 0.448 0.437
256 25.14 0.839 0.151 26.44 0.791 0.184 14.24 0.475 0.415

DUSt3R [66] 224 26.44 0.871 0.130 27.63 0.830 0.160 15.24 0.530 0.346
256 26.56 0.873 0.129 27.73 0.833 0.158 15.21 0.527 0.342

MASt3R [33] 224 26.46 0.872 0.130 27.79 0.834 0.158 15.32 0.541 0.335
256 26.63 0.876 0.127 27.91 0.837 0.156 15.32 0.552 0.331

Table A6. Effect of input resolution.

RealEstate10K (2 views) RealEstate10K (4 views) RealEstate10K (6 views) RealEstate10K (8 views)
PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔

MVSplat 26.36 0.868 0.129 22.20 0.820 0.118 20.95 0.803 0.203 20.35 0.792 0.214

27.46 0.889 0.115 29.28 0.920 0.090 29.97 0.930 0.083 30.24 0.934 0.080
(+1.10) (+0.021) (-0.014) (+7.08) (+0.100) (-0.028) (+9.02) (+0.127) (-0.120) (+9.89) (+0.142) (-0.134)

Method

H3R-ω (Ours)

Table A7. Performance comparison across varying number of input views.

sitional variations, disrupting the geometric cues essential
for precise reconstruction. Given our emphasis on cross-
domain generalization, we omit pose normalization in our
final model.
Effect of input resolution. We investigate the impact of
input resolution on reconstruction performance by compar-
ing models trained at 224→224 versus 256→256 resolution,
as shown in Tab. A6. Higher resolution yields only mod-
est improvements: +0.17 PSNR for MASt3R, +0.12 PSNR
for DUSt3R, and +0.24 PSNR for CLIP on RealEstate10K.
The results suggest that input resolution is less critical for
reconstruction quality compared to architectural choice and
training method. We adopt 256→256 as our default resolu-
tion primarily for consistency with standard practice [4, 7].
Effect of number of input views. We evaluate our model’s
adaptability with respect to the number of input views, com-
paring H3R-ω against MVSplat on RealEstate10K. As de-
tailed in Tab. A7, the two methods exhibit opposite scal-
ing behaviors. H3R-ω demonstrates robustness with the
number of input views, with PSNR climbing from 27.46 (2
views) to 30.24 (8 views). Conversely, MVSplat degrades
as more views are added, dropping from 22.20 (4 views) to

20.35 (8 views). These results highlight our framework’s
effective multi-view aggregation capabilities.
Effect of view overlap. We evaluate our method’s robust-
ness to varying view overlap, comparing H3R against MVS-
plat in Tab. A8. H3R consistently outperforms the baseline
across all tested overlap ranges. The performance gain is
most pronounced under challenging low-overlap scenarios
[0.60,0.65], where our method achieves a substantial 1.73
dB improvement in PSNR. As the view overlap increases,
providing richer geometric cues, this advantage gradually
narrows to 1.07 in high-overlap conditions [0.95,1.00]. This
trend demonstrates H3R’s robustness across varying geo-
metric constraints, with particularly strong performance in
challenging scenarios where existing methods often fail.

A.4. Further Comparison
Comparison with GS-LRM. We compare our H3R-
ε against the state-of-the-art GS-LRM [85], as shown
in Tab. A9. Our method demonstrates remarkable effi-
ciency, utilizing only 30% of the trainable parameters (91M
vs. 300M) and 20% of the training cost (37 vs. 192 GPU-
days). This efficiency does not compromise quality; in fact,



Overlap MVSplat H3R (ours) Improvement
PSNR↓ SSIM↓ LPIPS↔ PSNR↓ SSIM↓ LPIPS↔ !PSNR↓ !SSIM↓ !LPIPS↔

[0.60, 0.65) 24.41 0.841 0.151 26.14 0.877 0.127 +1.73 +0.036 -0.024
[0.65, 0.70) 25.00 0.852 0.144 26.44 0.882 0.124 +1.44 +0.030 -0.020
[0.70, 0.75) 25.68 0.862 0.133 27.00 0.887 0.116 +1.32 +0.025 -0.017
[0.75, 0.80) 25.74 0.864 0.131 27.01 0.888 0.115 +1.27 +0.024 -0.016
[0.80, 0.85) 26.15 0.871 0.129 27.33 0.893 0.113 +1.18 +0.022 -0.016
[0.85, 0.90) 26.18 0.872 0.129 27.39 0.894 0.114 +1.21 +0.022 -0.015
[0.90, 0.95) 25.92 0.863 0.134 27.12 0.886 0.118 +1.20 +0.023 -0.016
[0.95, 1.00) 27.86 0.881 0.117 28.93 0.899 0.105 +1.07 +0.018 -0.012

Table A8. Performance comparison across varying overlaps.

our method achieves superior perceptual quality with bet-
ter SSIM (0.897 vs. 0.892) and LPIPS (0.110 vs. 0.114)
scores. This combination of efficiency and quality makes
our model more practical for widespread adoption.

Method #Trainable #GPU days RealEstate10K
Params. 4090 / A100 PSNR↓ SSIM↓ LPIPS↔

GS-LRM 300M 0 / 192 28.10 0.892 0.114
H3R-ε 91M 30 / 7 28.03 0.897 0.110

Table A9. Comparison with GS-LRM [85]. We achieve compa-
rable performance with 30% trainable parameters and 20% train-
ing cost.

B. 3D Gaussian Parameterization

3D Gaussians provide an explicit and flexible representa-
tion for 3D scenes, and their parameterization is crucial
for model performance. To ensure reproducibility, we pro-
vide detailed specifications for each Gaussian parameter.
The specific configurations for each parameter are provided
in Tab. B1.

Parameter Activation Channel
Center None 3
Scale Sigmoid 3

Rotation L2 norm 4
Opacity Sigmoid 1
Color ReLU 3

Table B1. 3D Gaussian parameterization.

Ray distance. We uniformly sample 128 depth hypothe-
ses {di}128i=1 in inverse depth space between the near and far
planes. The model output is transformed into a probability
distribution ϑ over these hypotheses using softmax activa-

tion and the ray distance t is computed as the weighted sum:

ϑ = softmax(Gdistance), (14)

t =
128∑

i=1

ϑi · di, (15)

where Gdistance is the depth head output. The near and far
planes are dataset-specific. For scene-level datasets such
as RealEstate10K and ACID, we set the planes to 1 and
100, respectively. For the object-level DTU dataset, we
adopt the configuration from MVSplat [7] with near and
far planes of 2.215 and 4.525, respectively. Our pilot ex-
periments demonstrate that employing multiple hypothe-
ses yields slight performance improvements over the two-
hypothesis approach used in GS-LRM [85].
Scale. Following pixelSplat [4], we parameterize Gaussian
scales in image space instead of world space. The scale
head output Gscale is mapped to a predefined scale range in
pixel space [smin, smax] using sigmoid activation:

ϑ = ϖ(Gscale), (16)
spixel = (1↗ ϑ)smin + ϑsmax. (17)

We then compute the world-space scale sworld as:

sworld = spixel · pworld · t, (18)

where pworld is the pixel size in world space. This scal-
ing approach maintains proper perspective by ensuring that
distant Gaussians have appropriate screen-space sizes. For
both scene-level and object-level datasets, we set the pixel-
space scale range to smin = 0.5 and smax = 15.0.
Opacity. The opacity of each Gaussian is transformed to
the range (0, 1) using sigmoid activation.
Rotation. As in [85], we predict unnormalized quaternions
and apply L2-normalization to obtain unit quaternions.
RGB. For simplicity, we predict the zero-order Spherical
Harmonics (SH) coefficients. We apply ReLU activation to
ensure non-negative color values.
Center. Rather than predicting the Gaussian center directly,
we derive it from the ray distance and camera parameters.



For each pixel, the ray origin ray
o

and direction ray
d

are
computed from the known camera parameters. The Gaus-
sian center xyz is then determined by:

xyz = ray
o
+ t · ray

d
. (19)

C. Implementation Details
C.1. Datasets
We train and evaluate our method on two large-
scale datasets: RealEstate10K [88] and ACID [35].
RealEstate10K contains 67,477 training scenes and 7,289
test scenes of diverse indoor and outdoor environments
from YouTube, while ACID comprises 11,075 training
scenes and 1,972 test scenes of natural landscapes captured
by drones. For both datasets, camera poses are estimated
using Structure-from-Motion (SfM) [51]. We follow the
official train/test splits and evaluation protocol of pixel-
Splat [4], where two input context views are used to syn-
thesize three novel views for each test scene. To evaluate
cross-dataset generalization, we perform zero-shot evalua-
tion on the object-centric DTU dataset [24]. Following the
setup in [7], we evaluate on 16 validation scenes, render-
ing four novel views for each scene. We evaluate rendering
quality with three standard metrics: PSNR, SSIM [70], and
LPIPS [86].

C.2. Model Details
Our camera-aware Transformer comprises 12 layers with
hidden dimensions of 512 and MLP hidden dimensions
of 1536, employing Pre-LayerNorm, QK-Norm [19], and
SwiGLU [52] activation.

C.3. Training Details
We initialize the visual encoder from publicly available
checkpoints and freeze its parameters throughout training.
Unless otherwise specified, we adopt the hyperparameters
from MVSplat [7]. Following [4, 7], we apply random
horizontal flipping for data augmentation. The pixel gra-
dient loss weight is empirically set to 1.0. We employ
Bfloat16 mixed-precision training and cache visual features
to accelerate training. Detailed training settings for the
RealEstate10K and ACID datasets are provided in Tab. D1
and Tab. D2, respectively.
H3R: Pre-training (256→256, 2 views) We pre-train the
H3R model with two context views at 256→256 resolu-
tion. The model is trained for 1M steps on RealEstate10K
and 400K steps on ACID. Training requires seven days and
three days, respectively, on 4 NVIDIA RTX 4090 GPUs.
Following pixelSplat [4], the maximum frame distance is
linearly increased from 25 to 45 over the initial 150K steps
and then held constant.
H3R-ω: Multi-view (256→256, 2-8 views) We finetune
base model with random 2-8 context views at 256→256

resolution. The model is trained for 30K steps on
RealEstate10K and 90K steps on ACID. Training takes
about 15 hours on 4 NVIDIA A6000 GPUs and 28 hours
on 8 NVIDIA RTX4090 GPUs. During finetuning, we ran-
domly include target camera poses as input with probability
0.5 for each training sample.
H3R-ε: High-resolution (512→512, 2 views) We finetune
base model with two context views at 512→512 resolution.
The model is trained for 80K steps on RealEstate10K and
20K steps on ACID. Training takes about 42 and 11 hours
on 4 NVIDIA A100 GPUs, respectively. The maximum
frame distance between context views is fixed at 45.

D. Additional Visualizations
We present additional qualitative results on RealEstate10K
in Figs. D1 to D3. Collectively, these studies illustrate that
incorporating target pose, more input views, and higher res-
olution inputs directly contributes to substantial gains in
structural integrity, detail preservation, and overall photo-
realism.



config H3R H3R-ω H3R-ε

peak learning rate 1e-4 5e-5 5e-5
min learning rate 5e-5 - -
warm-up steps 3,000 0 0

LR schedule
cosine decay
150k steps,

then constant
constant constant

optimizer Adam
betas (0.9, 0.999)
weight decay 0
gradient clip 0.5
total batch size 16

EMA decay 0.999

trainable parameters 90.9 M
training steps 1,000,000 30,000 80,000
GPU 4 → RTX 4090 4 → A100-80GB 4 → A100-80GB
training time 7.4 days 15 hours 42 hours

Table D1. Training settings for RealEstate10K.

config H3R H3R-ω H3R-ε

peak learning rate 1e-4 5e-5 5e-5
min learning rate 5e-5 - -
warm-up steps 3,000 0 0

LR schedule
cosine decay
150k steps,

then constant
constant constant

optimizer Adam
betas (0.9, 0.999)
weight decay 0
gradient clip 0.5
total batch size 16

EMA decay 0.999

trainable parameters 90.9 M
training steps 400,000 90,000 20,000
GPU 4 → RTX 4090 8 → RTX 4090 4 → A100-80GB
training time 3 days 28 hours 11 hours

Table D2. Training settings for ACID.



pixelSplat MVSplat H3R-α w/o
target pose

H3R-α w/
target poseInput Ground Truth

Figure D1. Impact of target camera poses on RealEstate10K. Our method (H3R-ω) leverages target camera poses to generate more
complete and view-aligned Gaussian splats, improving geometric coherence while mitigating artifacts, particularly in unobserved regions.



pixelSplat (2) MVSplat (2) H3R-α (2) H3R-α (8) Ground Truth

Figure D2. Impact of the number of input views on RealEstate10K. Increasing input views from two to eight enhances geometric
completeness and visual fidelity, particularly for scene boundaries and specular surfaces.



pixelSplat MVSplat H3R H3R-βInput Ground Truth

Figure D3. Impact of input resolution on RealEstate10K. Using 512→512 inputs, our H3R-ε achieves more accurate geometry and
photorealistic texture than recent methods, particularly for sharp edges and complex surfaces.


	Introduction
	Related work
	Method
	Sparse-view Reconstruction
	Multi-view Reconstruction

	Experiments
	Main Results
	Ablation Studies

	Conclusion
	Acknowledgments
	Additional Analysis
	Visual Encoder Analysis
	Training Dynamics
	Input Analysis
	Further Comparison

	3D Gaussian Parameterization
	Implementation Details
	Datasets
	Model Details
	Training Details

	Additional Visualizations

