
Appendix for: A Unified Framework to BRIDGE Complete and Incomplete Deep
Multi-View Clustering under Non-IID Missing Patterns

Xiaorui Jiang1, Buyun He1, Peng Yuan Zhou3, Xinyue Chen2, Jingcai Guo4, Jie Xu2,5,∗, Yong Liao1,∗

1University of Science and Technology of China; 2University of Electronic Science and Technology of China; 3Aarhus University;
4The Hong Kong Polytechnic University; 5Singapore University of Technology and Design

1. Related Work

1.1. Multi-View Clustering
In the field of multi-view clustering, traditional methods and
deep learning-based methods dominate as two mainstream
approaches. Specifically, traditional methods include graph-
based [1, 19, 31], subspace-based [29, 30, 32], kernel-based
[2, 9, 18], and matrix factorization-based [8, 33, 34]. Tra-
ditional methods have relatively strong interpretability and
play an important role in certain specific fields. However,
limited by their feature extraction capabilities, they are rela-
tively weak in handling complex tasks. Deep learning-based
methods are playing an increasingly important role, with the
mainstream approach being the use of deep autoencoders
[23, 26, 28]. Subsequently, the reconstructed encoder repre-
sents the data, followed by deeper representations achieved
through self-supervised modules, fusion modules, clustering
modules, and others [17]. Among the techniques used in
deep MVC, the most representative include those based on
deep divergence [16, 25], contrastive learning [5, 26], and
mutual information [6, 7]. The core of them lies in fully
exploring the complementary and consistent information of
multi-view data to achieve the clearest clustering structure.

1.2. Incomplete Multi-View Clustering
In real life, multi-view datasets are likely to have missing
instances in some data, which has promoted the development
of incomplete multi-view clustering (IMVC) [6, 10, 27].
The characteristic of incomplete multi-view datasets is that
some instances of certain samples are missing, rendering
that portion of information unusable. In such scenarios,
the core of IMVC research lies in maximizing the use of
available knowledge and minimizing the negative impact of
missing information, which corresponds to handling missing
data at the methodological level. Imputation-based methods
[4, 6, 7, 12, 15] and imputation-free methods [1, 22, 24] are
the two main paradigms at present. The former can achieve
the final clustering results as the missing data (features) are
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fully recovered, while the latter avoids imputation altogether,
as predicting missing values inevitably introduces noise.

1.3. The Overlap Between Deep MVC and IMVC
Deep IMVC data consists of two components: the com-
plete data and the incomplete data, where training on com-
plete data essentially aligns with a typical deep MVC task.
Many studies emphasize that before tackling incomplete data
[3, 6, 7, 24], it is crucial to first establish a well-performing
model on complete data. Theoretically, DCP [7] argues that
cross-view consistency and data recovery are inherently in-
terconnected—learning from complete data facilitates the
recovery of incomplete data, and vice versa. DSIMVC [14]
highlights that learning from both complete and incomplete
data is no worse than learning solely from complete data,
yet pretraining on complete data remains a fundamental step.
DMVG [20] addresses IMVC by decomposing it into two
independent sub-tasks: missing view generation and mul-
tiview learning. It first applies methods like VIGAN [12]
and CRA [15] for data recovery before employing standard
MVC techniques on the reconstructed dataset. However,
even in DMVG, the view generation process still depends on
complete data training. In summary, representations learned
from complete data provide the basis for training on incom-
plete data, shaping our core motivation: when designing
deep IMVC tasks, the primary focus should be on improv-
ing incomplete data processing, while minimizing efforts
on complete data, as standard deep MVC methods can be
directly leveraged for it.

2. Motivation

In Figure 1 in the main text, we illustrate the mainstream
deep MVC and IMVC methods, and the following conclu-
sions are drawn from our observations:

(1) Deep MVC and IMVC share significant overlap in
methodology. Specifically, in IMVC, the training methods
for the complete data portion are mostly similar to those
used in MVC—this is unsurprising, as the two can almost
be regarded as identical tasks. However, such repetitive
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Table 1. Clustering performance gains (NMI%) compared with BRIDGE+MI (Part 1/2). M represents the missing rate, and the best results
are highlighted in bold.

Method BDGP BBCSport Hdigit MNIST-USPS

M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7
CDIMC-net 70.8-8.8 69.7-1.7 59.9-5.1 45.2+29.6 33.5+15.9 35.3+30.4 40.9-53.4 39.2-52.2 29.8-54.9 65.5-27.2 53.6-30.9 49.4-28.9
COMPLETER 54.1-25.5 27.7-43.7 29.8-35.2 4.2-11.4 2.6-15.0 4.1-0.8 89.1-5.2 93.4+2 89.2+4.5 93.1+0.4 88.7+4.2 81.5+3.2
DIMVC 64.1-15.5 62.8-8.6 42.3-22.7 4.1-11.5 1.3-16.3 3.5-1.4 92.7-1.6 90.7-0.7 88.9+4.2 80.3-12.4 79.6-4.9 73.6-4.7
DCP 40.9-38.7 50.4-21.0 26.4-38.6 8.0-7.6 8.7-8.9 1.2-3.7 91.5-2.8 94.5+3.1 90.7+6.0 82.3-10.4 84.6+0.1 71.1-7.2
DSIMVC 88.4+8.8 87.0+15.6 81.4+16.4 43.3+27.7 22.3+4.7 25.0+20.1 95.8+1.5 93.2+1.8 90.6+5.9 95.1+2.4 92.9+8.4 88.1+9.8
ProImp 85.3+5.7 69.4-2.0 68.5+3.5 28.7+13.1 25.6+8.0 14.8+9.9 94.7+0.4 93.8+2.4 89.7+5.0 86.9-5.8 80.9-3.6 78.1-0.2
APADC 69.3-10.3 63.4-8.0 58.5-6.5 6.8-8.8 5.8-11.8 5.9+1.0 44.6-49.7 41.3-50.1 62.8-21.9 93.0+0.3 88.9+4.4 83.5+5.2
CPSPAN 81.3+1.7 79.1+7.7 79.6+14.6 26.1+10.5 24.5+6.9 24.1+19.2 89.2-5.1 90.2-1.2 89.3+4.6 77.5-15.2 73.3-11.2 72.6-5.7
ICMVC 65.1-14.5 64.0-7.4 49.5-15.5 9.2-6.4 2.9-14.7 2.2-2.7 96.4+2.1 92.1+0.7 87.9+3.2 96.0+3.3 90.8+6.3 87.2+8.9
DIVIDE 81.8+2.2 74.6+3.2 50.8-14.2 1.4-14.2 2.1-15.5 1.8-3.1 93.8-0.5 90.3-1.1 84.6-0.1 89.0-3.7 83.7-0.8 78.8+0.5

BRIDGE+MI 79.6 71.4 65.0 15.6 17.6 4.9 94.3 91.4 84.7 92.7 84.5 78.3
BRIDGE+DD 86.6+7.0 81.6+10.2 75.0+10.0 69.3 +53.7 64.5+46.9 56.8+51.9 86.2-8.1 84.3 -7.1 81.1-3.6 78.5 -14.2 72.9-11.6 67.8 -10.5
BRIDGE+CL 91.6+12.0 86.5+15.1 81.8+16.8 67.2+51.6 62.7+45.1 53.4+48.5 97.0+2.7 94.4 +3.0 91.9+7.2 96.1+3.4 93.2 +8.7 88.7 +10.4

Table 2. Clustering performance gains (ARI%) compared with BRIDGE+MI (Part 1/2). M represents the missing rate, and the best results
are highlighted in bold.

Method BDGP BBCSport Hdigit MNIST-USPS

M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7
CDIMC-net 69.9-5.4 67.3+1.7 60.7+4.3 25.5+15.8 14.3+7.0 19.3+18.3 22.2-73.1 26.1-66.4 8.8-73.9 45.4-47.2 31.2-46.2 32.9-37.0
COMPLETER 27.2-48.1 7.6-58.0 7.5-48.9 1.65-8.05 0.1-7.2 0.1-0.9 83.8-11.5 94.8+2.3 90.7+8.0 93.3+0.7 87.4+10.0 72.6+2.7
DIMVC 62.3-13.0 61.6-4.0 40.0-16.4 1.1-8.6 0.2-7.1 0.2-0.8 93.8-1.5 92.0-0.5 90.0+7.3 74.7-17.9 72.3-5.1 63.7-6.2
DCP 21.1-54.2 24.2-41.4 6.23-50.17 3.4-6.3 1.7-5.6 0.1-0.9 85.5-9.8 95.7+3.2 92.3+9.6 61.9-30.7 74.7-2.7 50.1-19.8
DSIMVC 90.5+15.2 89.2+23.6 83.5+27.1 37.7+28.0 17.4+10.1 20.3+19.3 96.8+1.5 94.5+2.0 92.0+9.3 95.9+3.3 93.6+16.2 88.9+19.0
ProImp 87.0+11.7 66.9+1.3 67.8+11.4 20.9+11.2 21.8+14.5 10.7+9.7 95.9+0.6 95.2+2.7 91.4+8.7 84.4-8.2 76.8-0.6 76.4+6.5
APADC 61.2-14.1 50.2-15.4 48.1-8.3 1.5-8.2 1.3-6.0 1.1+0.1 18.5-76.8 21.9-70.6 45.6-37.1 93.8+1.2 89.9+12.5 83.2+13.3
CPSPAN 97.6+22.3 84.0+18.4 82.6+26.2 11.1+1.4 12.7+5.4 11.3+10.3 89.8-5.5 91.4-1.1 90.5 +7.8 69.7-22.9 65.6-11.8 64.4-5.5
ICMVC 58.6-16.7 59.4-6.2 42.0-14.4 5.6-4.1 1.9-5.4 1.0 97.3+2.0 93.5+1.0 89.5+6.8 96.8+4.2 91.8+14.4 87.7+17.8
DIVIDE 82.8+7.5 75.4+9.8 48.0-8.4 0.1-9.6 0.6-6.7 0.8-0.2 95.1-0.2 91.9-0.6 86.3+3.6 89.7-2.9 81.4+4.0 78.5+8.6

BRIDGE+MI 75.3 65.6 56.4 9.7 7.3 1.0 95.3 92.5 82.7 92.6 77.4 69.9
BRIDGE+DD 89.7+14.4 84.8+19.2 77.5+21.1 69.9+60.2 63.4+56.1 53.3+52.3 87.0-8.3 85.3 -7.2 81.3-1.4 74.1 -18.5 65.8-11.6 59.0 -10.9
BRIDGE+CL 93.7+18.4 89.4+23.8 84.4+28.0 62.1+52.4 59.2+51.9 53.0+52.0 97.7+2.4 95.7+3.2 93.4+10.7 96.9 +4.3 94.4+17.0 89.8+19.9

Table 3. Clustering performance gains (PUR%) compared with BRIDGE+MI (Part 1/2). M represents the missing rate, and the best results
are highlighted in bold.

Method BDGP BBCSport Hdigit MNIST-USPS

M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7
CDIMC-net 86.4-1.7 84.6+1.3 82.2+3.5 51.0-2.6 41.1-6.5 42.6-8.8 45.9-52.0 44.4-52.2 32.1-60.2 51.4-45.1 45.9-44.8 41.4-45.2
COMPLETER 55.5-32.6 42.8-40.5 44.4-34.3 36.2-17.4 36.6-11.0 37.0-14.4 87.1-10.8 97.6+1.0 95.7+3.4 96.9+0.4 93.8+3.1 83.3-3.3
DIMVC 80.3-7.8 81.7-1.6 65.3-13.4 35.5-18.1 35.8-11.8 36.1-15.3 97.2-0.7 96.3-0.3 95.4+3.1 82.6-13.9 83.0-7.7 77.8-8.8
DCP 51.8-36.3 58.3-25.0 36.2-42.5 41.0-12.6 39.7-7.9 35.7-15.7 88.5-9.4 98.1+1.5 96.5+4.2 68.8-27.7 77.8-12.9 57.6-29.0
DSIMVC 96.1+8.0 95.5+12.2 93.0+14.3 68.6+15.0 52.6+5.0 56.3+4.9 98.5+0.6 97.5+0.9 96.3+4.0 98.1+1.6 97.1+6.4 94.8+8.2
ProImp 94.6+6.5 84.2+0.9 84.8+6.1 60.5+6.9 56.8+9.2 49.6-1.8 98.1+0.2 97.8+1.2 96.0+3.7 92.9-3.6 89.2-1.5 88.7+2.1
APADC 79.7-8.4 75.3-8.0 68.4-10.3 40.4-13.2 37.7-9.9 37.7-13.7 44.8-53.1 41.5-55.1 65.1-27.2 97.2+0.7 95.5+4.8 92.1+5.5
CPSPAN 93.3+5.2 92.7+9.4 92.6+13.9 53.5-0.1 53.9+6.3 50.7-0.7 95.3-2.6 96.0-0.6 95.6+3.3 81.7-14.8 79.3-11.4 78.0-8.6
ICMVC 73.6-14.5 75.6-7.7 65.8-12.9 41.0-12.6 39.9-7.7 38.2-13.2 98.8+0.9 97.0+0.4 95.1+2.8 98.6+2.1 96.2+5.5 94.3+7.7
DIVIDE 92.6+4.5 89.2+5.9 74.6-4.1 30.6-23.0 31.5-16.1 33.1-18.3 97.7-0.2 96.3-0.3 93.6+1.3 95.2-1.3 91.7+1.0 89.6+3.0

BRIDGE+MI 88.1 83.3 78.7 53.6 47.6 51.4 97.9 96.6 92.3 96.5 90.7 86.6
BRIDGE+DD 95.7+7.6 93.6 +10.3 90.2+11.5 86.6+33.0 83.1+35.5 76.7+25.3 93.9-4.0 93.1-3.5 91.1-1.2 86.5-10.0 79.5-11.2 75.2-11.4
BRIDGE+CL 97.4+9.3 95.6+12.3 93.4+14.7 83.5+29.9 79.6+32.0 76.0+24.6 99.0+1.1 98.0 +1.4 97.0+4.7 98.6+2.1 97.4+6.7 95.3+8.7

designs still take up considerable space and effort, making
it difficult to focus on the processing of incomplete data. In
other words, in IMVC, the module for processing complete
data can be replaced, which would significantly reduce the
cost of developing a new IMVC method. This motivates us
to shift our focus to the handling of incomplete data.

(2) Imputation-based and imputation-free methods
represent the two main paradigms in IMVC. As dis-

cussed, these approaches are suitable for different scenarios
and are not inherently superior or inferior. The former pro-
vides a complete clustering structure, while the latter avoids
introducing noise and is computationally simpler. Given
these considerations, a potential direction is to integrate both
paradigms, incorporating imputation and imputation-free
modules into a unified framework.

(3) Existing methods rarely consider the Non-IID miss-



Table 4. Clustering performance gains (NMI%) compared with BRIDGE+MI (Part 2/2). M represents the missing rate, OOM denotes out
of memory, and the best results are highlighted in bold. Methods supporting ≥3 views are compared.

Method Cifar10 Cifar100 Reuters NUSWIDE

M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7
CDIMC-net OOM OOM OOM OOM OOM OOM 1.4-15.7 0.9-9.0 0.2-10.0 6.9-4.9 5.2-5.0 3.0-4.3
COMPLETER 90.8-0.9 87.3+1.4 84.0+1.3 71.7+8.9 74.3-1.1 73.6+8.3 10.8-6.3 19.0+9.1 12.3+2.1 8.6-3.2 5.0-5.2 5.8-1.5
DIMVC 90.0-1.7 86.0+0.1 82.7 98.9+36.1 97.9+22.5 98.0+32.7 27.1+10.0 28.4+18.5 27.9+17.7 16.7+4.9 13.7+3.5 10.3+3.0
DCP 90.8-0.9 87.3+1.4 84.1+1.4 81.4+18.6 78.1+2.7 80.5+15.2 13.5-3.6 16.2+6.3 11.0+0.8 6.1-5.7 8.2-2.0 6.4-0.9
DSIMVC 89.3-2.4 84.6-1.3 80.2-2.5 50.9-11.9 43.5-31.9 53.9-11.4 28.5+11.4 28.5+18.6 25.9+15.7 16.1+4.3 21.2+11.0 17.8 +10.5
CPSPAN 53.1-38.6 58.7-27.2 63.6-19.1 87.9+25.1 88.8+13.4 87.0+21.7 21.6+4.5 22.1+12.2 19.9+9.7 11.0-0.8 14.0+3.8 13.4+6.1
DIVIDE 81.2-10.5 75.7-10.2 69.1-13.6 94.5+31.7 91.5+16.1 87.6+22.3 10.1-7.0 7.4-2.5 5.5-4.7 11.5-0.3 6.7-3.5 3.6-3.7

BRIDGE+MI 91.7 85.9 82.7 62.8 75.4 65.3 17.1 9.9 10.2 11.8 10.2 7.3
BRIDGE+DD 89.8-1.9 86.0+0.1 80.3-2.4 97.2+34.4 96.1+20.7 94.8+29.5 36.3+19.2 35.6+25.7 30.6+20.4 20.8+9.0 19.0+8.8 16.6+9.3
BRIDGE+CL 91.4-0.3 87.8+1.9 84.3+1.6 99.7+36.9 98.9+23.5 99.6+34.3 31.3+14.2 30.4+20.5 22.3+12.1 30.2+18.4 25.9+15.7 22.6+15.3

Table 5. Clustering performance gains (ARI%) compared with BRIDGE+MI (Part 2/2). M represents the missing rate, OOM denotes out of
memory, and the best results are highlighted in bold. Methods supporting ≥3 views are compared.

Method Cifar10 Cifar100 Reuters NUSWIDE

M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7
CDIMC-net OOM OOM OOM OOM OOM OOM 45.7+35.4 44.4+38.0 31.3+25.5 51.4+40.0 45.9+40.6 40.6+34.6
COMPLETER 91.9-1.1 88.2+2.0 84.9+1.3 19.7-1.4 20.6-13.0 23.1+4.3 1.6-8.7 3.3-3.1 3.0-2.8 2.4-9.0 0.5-4.8 0.5-5.5
DIMVC 91.1-1.9 87.0+0.8 83.7+0.1 94.3+73.2 89.3+55.7 90.7+71.9 22.1+11.8 22.2+16.2 22.0+14.5 22.1+10.7 22.2+16.9 22.0+16.0
DCP 92.0-1.0 88.4+2.2 85.0+1.4 35.6+14.5 24.3-9.3 30.5+11.7 2.8-7.5 4.0-2.4 1.4-4.4 1.5-9.9 4.1-1.2 0.8-5.2
DSIMVC 90.1-2.9 84.5-1.7 78.2-5.4 14.9-6.2 9.6-24.0 17.4-1.4 22.3+12.0 21.3+14.9 19.3+13.5 12.0+0.6 19.2+13.9 15.6 +9.6
CPSPAN 41.3-51.7 36.0-50.2 51.2-32.4 60.8+39.7 67.9+34.3 61.7+42.9 13.9+3.6 15.0+8.6 13.2+7.4 6.6-4.8 8.4+3.1 8.1+2.1
DIVIDE 74.7-18.3 65.4-20.8 56.9-26.7 79.5+58.4 59.7+26.1 55.0+36.2 5.3-5.0 5.2-1.2 3.7-2.1 11.1-0.3 6.2+0.9 2.9-3.1

BRIDGE+MI 93.0 86.2 83.6 21.1 33.6 18.8 10.3 6.4 5.8 11.4 5.3 6.0
BRIDGE+DD 91.1-1.9 87.4+1.2 81.1-2.5 91.9+70.8 91.1+57.5 89.9+71.1 30.4+20.1 29.0+22.6 25.6+19.8 18.4+7.0 17.2+11.9 14.9+8.9
BRIDGE+CL 92.7-0.3 89.1+2.9 85.6+2.0 98.7+77.6 95.1+61.5 98.5+79.7 24.5+14.2 25.3+18.9 18.4+12.6 29.1+17.7 24.8+19.5 21.4+15.4

Table 6. Clustering performance gains (PUR%) compared with BRIDGE+MI (Part 2/2). M represents the missing rate, OOM denotes out
of memory, and the best results are highlighted in bold. Methods supporting ≥3 views are compared.

Method Cifar10 Cifar100 Reuters NUSWIDE

M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7 M = 0.3 M = 0.5 M = 0.7
CDIMC-net OOM OOM OOM OOM OOM OOM 45.7+2.6 44.4+0.7 31.3-9.8 51.4 45.9-3.3 40.6+0.3
COMPLETER 96.3-0.5 94.5+0.9 92.8+0.6 33.5-2.4 34.0-19.9 28.1-9.0 26.8-16.3 33.4-10.3 27.8-13.3 31.2-20.2 25.6-23.6 25.4-14.9
DIMVC 95.8-1.0 93.9+0.3 92.2 95.0+59.1 91.7+37.8 92.6+55.5 49.0+5.9 50.8+7.1 48.3+7.2 42.9-8.5 39.6-9.6 36.4-3.9
DCP 96.3-0.5 94.5+0.9 92.9+0.7 49.5+13.6 46.1-7.8 49.7+12.6 29.0-14.1 32.1-11.6 25.7-15.4 28.3-23.1 31.7-17.5 26.8-13.5
DSIMVC 95.4-1.4 92.4-1.2 87.3-4.9 22.8-13.1 17.5-36.4 24.4-12.7 49.7+6.6 46.1+2.4 46.3+5.2 39.7-11.7 49.0-0.2 43.9 +3.6
CPSPAN 57.7-39.1 46.8-46.8 66.2-26.0 62.3+26.4 65.9+12.0 62.1+25.0 44.2+1.1 43.8+0.1 41.3+0.2 36.5-14.9 38.7-10.5 38.5-1.8
DIVIDE 88.7-8.1 83.3-10.3 79.6-12.6 94.2+58.3 90.4+36.5 86.3+49.2 43.8+0.7 36.6-7.1 29.7-11.4 49.0-2.4 42.5-6.7 35.9-4.4

BRIDGE+MI 96.8 93.6 92.2 35.9 53.9 37.1 43.1 43.7 41.1 51.4 49.2 40.3
BRIDGE+DD 95.8-1.0 94.1+0.5 90.9-1.3 96.7+60.8 95.6+41.7 95.5+58.4 60.1+17.0 58.6+14.9 55.9+14.8 51.0-0.4 49.9+0.7 48.3+8.0
BRIDGE+CL 96.6-0.2 94.9+1.3 93.1+0.9 99.6+63.7 98.1+44.2 99.4 +62.3 52.7+9.6 52.2+8.5 47.3+6.2 59.2+7.8 56.1+6.9 53.8+13.5

ing patterns. In practice, it is highly likely that data within
the same view may have inconsistent distributions. For ex-
ample, high temperatures might cause a sensor to collect
biased data, leading to distributions that differ from those
collected under normal temperatures. Based on this consider-
ation, we aim to align the distributions within the same view,
enabling the incomplete data to leverage well-represented
complete data for more accurate predictions.

(4) There is currently no comprehensive framework
for deep IMVC. A unified deep IMVC framework would
facilitate the development and evaluation of new methods,
providing a fairer platform for comparison within the field.
With this in mind, we seek to establish a comprehensive and
unified deep IMVC framework to drive a transformation in

the research priorities of this field.

3. Experimental Details
This section provides additional details and results about the
experiments.

3.1. Datasets
Our experiments use eight datasets, with the number of
views, samples, and classes summarized in Table 7.

3.2. Comparison Methods
We choose 10 classic and state-of-the-art deep IMVC meth-
ods for an in-depth comparison, including CDIMC-net [21],
COMPLETER [6], DIMVC [22], DCP [7], DSIMVC [13],



Table 7. Statistics of the related datasets.

Datasets #Samples #Views #Classes
MNIST-USPS 5,000 2 10

BDGP 2,500 2 5
BBCSport 544 2 5

Hdigit 10,000 2 10
Reuters 1,200 5 6

NUSWIDE 5,000 5 5
Cifar10 50,000 3 10
Cifar100 50,000 3 100

ProImp [4], APADC [24], CPSPAN [3], ICMVC [1], and
DIVIDE [11]. The specific descriptions of these methods
are as follows:

• CDIMC-net introduces the Cognitive Deep Incomplete
Multi-view Clustering Network, which captures high-level
features and local structures of each view by integrating
view-specific deep encoders and graph embedding strate-
gies into its framework.

• COMPLETER is a framework that integrates represen-
tation learning and data recovery from an information-
theoretic perspective.

• DIMVC is a novel deep IMVC framework without impu-
tation or fusion to address issues such as inaccurate input
or imputation of missing data and low-quality views.

• DCP is a unified framework designed to address the fol-
lowing two challenging issues in incomplete multi-view
representation learning: i) how to learn a consistent repre-
sentation that unifies different views, and ii) how to recover
missing views.

• DSIMVC is a novel framework designed to mitigate the
risk of clustering performance degradation caused by se-
mantically inconsistent input views.

• ProImp is a new dual-stream model that employs dual at-
tention layers and dual contrastive learning losses to learn
view-specific prototypes and model the sample-prototype
relationships.

• APADC proposes a hypothesis-free deep IMVC method,
which considers distribution alignment in feature learning.

• CPSPAN proposes a cross-view partial sample and proto-
type alignment network for deep incomplete multi-view
clustering.

• ICMVC is a novel high-confidence-guided incomplete
contrastive multi-view clustering method.

• DIVIDE is a novel decoupled contrastive multi-view clus-
tering method with higher-order random walks, which pro-
gressively identifies data pairs globally rather than locally
using random walks.

Table 8. Accuracy results of incomplete data after adding noise (%)

σ BDGP BBCSport Reuters NUSWIDE MNIST-USPS

0.0 93.48 77.98 46.17 53.90 94.98
0.1 93.44 78.53 46.08 53.82 95.10
0.2 93.00 78.35 46.58 53.30 94.98
0.3 92.40 77.61 45.75 52.68 94.76
0.4 91.92 76.88 45.75 52.22 94.48
0.5 91.08 76.33 45.42 51.58 94.14
0.6 90.16 75.60 45.08 50.70 93.82
0.7 88.92 75.60 44.75 49.76 93.46
0.8 88.04 75.41 44.75 48.80 92.86
0.9 87.40 72.84 44.83 48.22 92.06

3.3. Metrics
In our work, we introduce a new metric, the Final-to-
Complete Accuracy Ratio (FCR), which is defined as the
ratio of the model’s final accuracy to its accuracy on the
complete data:

FCR =
ACC

ACCcp
. (1)

It can be seen that the value of FCR is constrained by both
the complete and incomplete data. Specifically, if the model
achieves higher ACC on the complete data but performs
poorly when transferred to incomplete data, resulting in a
lower ratio of overall ACC to complete ACC (i.e., ACCcp),
FCR will decrease, reflecting the model’s poor handling of
incomplete data.

Notably: Since the ACC on all data is generally lower,
the range of FCR is typically 0-1, but it is also possible for
the model to represent incomplete data better, resulting in
a value greater than 1. This phenomenon (FCR > 1) fre-
quently appears in simple datasets (e.g., BBCSport), where
the complete portion has very few samples, and noise during
transfer stage results in better representation of incomplete
data by the model. For most datasets, when the sample size
is not extremely small, FCR is less than 1, which aligns with
intuition.

4. Additional Experiments
In this section, we provide additional experimental results
and conduct further experiments.

4.1. Results under more metrics
We supplement the experimental results of other metrics cor-
responding to the main text (Table 1 and Table 2 in the main
text), including NMI, ARI, and PUR, as shown in Tables
(1)-(6). On these metrics, BRIDGE performs similarly to the
results in the main text, excelling in most cases.

4.2. Results under varying levels of uniform noise
intensity

To evaluate the robustness of our proposed method, we in-
troduce random noise to each view, with the noise intensity



(a) σ = 0.3 (b) σ = 0.5 (c) σ = 0.7 (d) σ = 0.9

Figure 1. Visualization of different noise intensities on the MNIST-USPS dataset with a missing rate of 0.7.

Table 9. Verification of the effectiveness of the distribution align-
ment module under different missing rates with added noise. ACC+
indicates the addition of the distribution alignment module (i.e.,
the complete BRIDGE), while ACC- indicates the removal of the
module. The same applies to other metrics (%).

Metric M = 0.3 M = 0.5 M = 0.7 M = 0.9

ACC- 93.12 90.96 85.20 76.08
ACC+ 93.16 91.08 87.40 76.48

NMI- 80.15 75.39 63.92 50.47
NMI+ 80.26 75.60 67.46 51.78

ARI- 83.70 78.92 66.62 50.01
ARI+ 83.81 79.16 71.28 51.48

PUR- 93.12 90.96 85.20 76.08
PUR+ 93.16 91.08 87.40 76.48

controlled by the parameter σ—a larger σ implies stronger
perturbation.

Results. Table 8 shows the experimental results of our
BRIDGE+CL on different datasets. It can be seen that the
introduction of noise negatively impacts BRIDGE, but it
still demonstrates a considerable degree of robustness. Ad-
ditionally, Table 9 validates the performance of BRIDGE
on the BDGP dataset at different missing rates, where M
represents the missing rate. It can be seen that, in the pres-
ence of noise, the distribution alignment module in BRIDGE
effectively aligns the consistency between the complete and
incomplete data, leading to good and accurate predictions
during the imputation phase.

Visualization. Additionally, we present the visualization
on the MNIST-USPS dataset with a missing rate of 0.7 in
Figure 1, where the noise intensity σ takes values of 0.3, 0.5,
0.7, and 0.9. It can be observed that the visualization results
under different noise intensities are very similar, demonstrat-
ing the robustness of BRIDGE to noise.
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