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Abstract

The document provides supplementary information not
elaborated on in our main paper due to space constraints:
implementation details (Section A), derivation of the Style
Matching Objective (Section B), spectrum-based style anal-
ysis (Section C), additional optimization-based compar-
isons (Section D), further studies (Section E), more qualita-
tive comparisons (Section F), additional results (Section G),
limitations (Section H), and broader impact (Section I).

A. Implementation Details
A.1. SMS Training Procedure
Algorithm 1 details our style matching training procedure.

A.2. Style Data
We leverage the off-the-shelf style LoRA from Civitai [1]
to support diverse artistic styles. To ensure a fair compar-
ison with baseline methods that use different style repre-
sentations, we carefully make the following adaptations: 1)
Text-driven (e.g., FreeStyle [4], DDS [5]): Use descriptive
text prompts to capture the style. 2) Exemplar-guided (e.g.,
StyleID [3], InstantStyle-Plus [15]): Source reference im-
ages from training data. 3) Collection-based (e.g., Style-
LoRA): Use Exactly the same LoRA.

A.3. Training time
Table 1 reports the per-image runtime (seconds) for base-
lines on an NVIDIA L40 GPU under default settings. Al-
though some baselines require only forward steps, they re-
quire additional processing steps such as DDIM [13] in-
version and substantial preparation (e.g., ControlNet [17]
training for InstantStyle-Plus [15] and Style-LoRA). In con-
trast, our SMS runs without any model-specific preparation,
achieving a comparable overall runtimes. Moreover, the
optimization-based nature of SMS enables it to extend to
more complex, parameterized representations, which is not
straightforward with other methods.

Algorithm 1: SMS Training Procedure
Input: Source image xsrc; text prompt ysrc; editing instruction

yedit; number of training iterations N
Output: Trained generator Gθ

Require: Pretrained SD diffusion denoiser ϵreal; style-specific
LoRA integrated into ϵreal yielding ϵstyle; trainable
LoRA integrated into ϵreal yielding ϵϕfake; SD VAE
encoder E

Initialization: ϵϕfake ← copyWeights(ϵreal)
1 for i = 1 to N do

/* Generate stylized images */
2 xtgt ← Gθ(x

src)
3

/* Prepare latents */
4 zsrc

0 ← E(xsrc)

5 z
tgt
0 ← E(xtgt)
// Adaptive Narrowing Sampling

6 Sample t ∼ U(tmin, tupper)
7 Sample ϵ ∼ N (0, I)

8 zsrc
t ←

√
ᾱtzsrc

0 +
√
1− ᾱtϵ

9 z
tgt
t ←

√
ᾱtz

tgt
0 +

√
1− ᾱtϵ

10

/* Update generator */
// Semantic-Aware Gradient Refinement

11 R(zsrc
t , t) = Norm(|ϵreal(z

src
t ; yedit, t)− ϵreal(z

src
t ; y∅, t)|)

12 Lstyle ← ||R⊙[wt(ϵstyle(z
tgt
t ; ysrc, t)−ϵϕfake(z

tgt
t ; ysrc, t))]||22

// Progressive Spectrum Reglarization

13 Lfreq ← ||Flow(z
tgt
0 , t),Flow(z

src
0 , t)||22

14 LSMS ← Lstyle + λLfreq
15 Gθ ← update(θ,∇θLSMS)
16

/* Update trainable LoRA */
17 Sample t ∼ U(tmin, tmax)
18 Sample ϵ ∼ N (0, I)

19 z
tgt
t ←

√
ᾱtz

tgt
0 +

√
1− ᾱtϵ

20 Lϕdenoise ← ||ϵ
ϕ
fake(z

tgt
t , t)− ϵ||22

21 ϵϕfake ← update(ϕ,∇ϕLϕdenoise)

Table 1. Image stylization per-image runtime comparison.

FreeStyle StyleID InstantStyle+ Style-LoRA DDS SMS
Style Text Exemplar Exemplar LoRA Text LoRA

Train - - ControlNet (∼ 600 h) + ControlNet - -
IPAdapter (∼ 192 h) (∼ 600 h)

DDIM Inv - 6.553 23.688 - - -
Inference 28.136 2.683 18.375 2.323 31.716 87.582



Figure 1. Comparison of RAPSD: Real-world images (Real) vs. Anime styles (Shinkai and Ghibli). Left: Zoom-in on low-frequency
range (linear scale). Middle: Full-spectrum analysis (log-log scale). Right: Zoom-in on the high-frequency range (linear scale), revealing
reduced high-frequency power in anime styles, which corresponds to smoother textures and stylized simplicity.

B. Derivation for Style Matching Objective

We derive the style matching objective (see Section 3.2 in
the main paper) by using score functions approximated by
DMs to minimize the KL divergence between the gener-
ated distribution pGθ

and the target style distribution pstyle.
This derivation connects Equation (1) to Equation (2) in the
main paper.

B.1. Gradient of the KL Divergence
Starting from the KL divergence:

DKL(pGθ
||pstyle) =

∫
pGθ

(xtgt) log
pGθ

(xtgt)

pstyle(xtgt)
dxtgt, (1)

where xtgt = Gθ(x
src) and Gθ is the generator parametrized

by θ. Our goal is to compute the gradient of DKL with re-
spect to θ:

∇θDKL = ∇θ

∫
pGθ

(xtgt) log
pGθ

(xtgt)

pstyle(xtgt)
dxtgt. (2)

Using the property ∇θpGθ
(x) = pGθ

(x)∇x log pGθ
(x), we

can express the gradient as:

∇θDKL =

∫
pGθ

(x)∇θ log pGθ
(x) log

pGθ
(xtgt)

pstyle(xtgt)
dxtgt.

(3)
Since pstyle does not depend on θ, we have
∇θ log pstyle(x

tgt) = 0. Furthermore, using the chain
rule, we can compute ∇θ log pGθ

(xtgt) as follows:

∇θ log pGθ
(xtgt) =

(
∇xtgt log pGθ

(xtgt)
) ∂xtgt

∂θ

= sGθ
(xtgt)

∂Gθ(x
src)

∂θ
,

(4)

where sGθ
(x) := sfake(x) = ∇x log pGθ

(x) is the
score function of the generated distribution. Following

DMD [16], we name it the fake score. Substituting back
into Equation (3):

∇θDKL =

∫
pGθ

(xtgt)sfake(x
tgt) log

pGθ
(xtgt)

pstyle(xtgt)

∂Gθ(x
src)

∂θ
.

(5)
Recognizing that the gradient of the log-density ratio is the
difference of the score functions:

∇x log
pGθ

(x)

pstyle(x)
= sfake(x)− sstyle(x), (6)

where sstyle(x) = ∇x log pstyle(x) is the score function of
the target style distribution. The integral can be expressed
as an expectation over x ∼ pGθ

:

∇θDKL = E
xtgt∼pGθ

[(
sstyle(x

tgt)− sfake(x
tgt)

) ∂Gθ(x
src)

∂θ

]
,

(7)
indicating that the gradient is pointing in the direction that
moves pGθ

closer to pstyle.

B.2. Approximating Score Functions with Diffusion
Models

We approximate the score functions sstyle(x
tgt) and sfake(x

tgt

using diffusion models [14, 16]. The score function of the
data distribution s(x) is related to the time-dependent score
function s(zt, t) through the diffusion process, where zt is
obtained by adding Gaussian noise to z0 = E(x).
Equivalence of Noise and Data Prediction Before pro-
ceeding with the substitution into the gradient expression, it
is beneficial to convert the data prediction models µ to noise
prediction models ϵ. This conversion simplifies the deriva-
tion and aligns with practical implementations, as DMs are
typically trained to predict the noise. The relationship is
given by [9]:

µ(zt, t) =
zt − σtϵ(zt, t)

αt
. (8)



Rewriting the score function in terms of the noise prediction
model, we have:

s(zt, t) = ∇zt log p(zt) =
zt − αtµ(zt, t)

σ2
t

=
ϵ(zt, t)

σt

(9)
Target style score. The target style distribution pstyle(x) is
modeled using a pretrained DM with a style-specific LoRA
ϵstyle. The score function is: sstyle(zt, t) =

ϵstyle(zt,t)
σt

.
Generated fake score. Similarly, we model the gener-
ated distribution pGθ

using a DM with trainable LoRA

ϵϕfake. The score function is: sfake(zt, t) =
ϵϕfake(zt,t)

σt
. We

train ϵϕfake to model the distribution of the generated images
ztgt
0 = E(Gθ(x

src)) by minimizing the standard denoising
objective [6]:

Lϕ
denoise = ||ϵϕfake(zt, t)− ϵ||22, (10)

Substituting the approximations into Equation (7), we ob-
tain:

∇θDKL ≃ E
t,ϵ

[
wt

(
ϵstyle(zt, t)− ϵϕfake(zt, t)

) ∂Gθ(x
src)

∂θ

]
.

(11)

C. Spectrum-Based Style Analysis
To identify and quantify the gap between the real and style
domains, we analyze their spectral differences, focusing on
two representative anime styles: Shinkai and Ghibli. Using
5, 958 Shinkai images [7], 714 Ghibli images and 90, 000
real-world images [12], we calculate the Radially Averaged
Power Spectral Density (RAPSD) for each domain.

Figure 1 shows that real images have consistently higher
power at both low and high frequencies. In contrast, anime
styles demonstrate reduced high-frequency power, suggest-
ing smoother textures and a uniform representation of de-
tails. This aligns with its artistic choices in anime, where
sharp transitions and clean edges are emphasized while
avoiding natural noise and irregularities in real-world im-
ages. Inspired by this gap, we propose a progressive
spectrum regularization term (see Section 3.3) that aligns
the spectral properties of generated images with the target
style domain, allowing faithful stylization while maintain-
ing structural fidelity.

D. Additional Optimization-based Method
Comparisons

In the main paper, we select DDS [5] as the representa-
tive optimization-based method for clarity. Although other
score distillation methods such as SDS [11] and PDS [10]
are technically relevant, our experiments show that these
methods fail in global style transfer, resulting in poorer per-
formance (see Figure 2(Row 1,3)). Furthermore, when we

Source SDS DDS PDS

SDS-LoRA DDS-LoRA PDS-LoRA Ours

Source SDS DDS PDS

SDS-LoRA DDS-LoRA PDS-LoRA Ours

Figure 2. Comparison of optimization-based methods (SDS [11],
DDS [5] and PDS [10]) with and without style LoRA priors on
Ghibli and oil painting styles.

(e) Dyn. 𝐿𝑓𝑟𝑒𝑞(a) Source (b) MSE (c) LatentLPIPS (d) Fixed 𝐿𝑓𝑟𝑒𝑞

Figure 3. Comparison of identity loss variants.

apply the same style LoRA priors to these text-guided op-
timization methods, the results (see Figure 2(Row 2,4)) in-
dicate that they do not fully leverage the style LoRA for
capturing style information.

E. Further Studies

E.1. Identity Loss Variant Study

In Section 3.3 of the main paper, we introduce a novel pro-
gressive spectrum regularization in the frequency domain,
instead of traditional spatial domain identity preservation
losses. While we have already ablated its effectiveness



Source 𝜆 = 5𝑒−3 𝜆 = 1𝑒−3 𝜆 = 5𝑒−4 𝜆 = 1𝑒−4 𝜆 = 5𝑒−5 𝜆 = 1𝑒−5

Figure 4. Effects of the loss weight λ. The first row shows results in kids illustration style, and the last two rows show results in Ghibli
style.

in Section 5.3, we further verify its utility by comparing
it against other latent space identity loss variants: spatial
Mean Square Error (MSE) [10] and E-LatentLPIPS [8]. Ad-
ditionally, we test a fixed frequency threshold thld(t) = 0.3,
retaining the top 30% of low-frequency components, as op-
posed to our timestep-aware progressive approach.

The qualitative results, presented in Figure 3, illustrate
the limitations of these alternatives. The MSE loss applied
uniform regularization across all pixels, leading to blurri-
ness and an inability to balance content fidelity with style
adaptation (see Figure 3(b)). The LatentLPIPS loss, de-
spite focusing on high-level feature alignment, struggles
to maintain sufficient identity while incorporating style de-
tails. Adopting a fixed frequency cutoff results in over-
sharpened artifacts, underscoring the necessity of timestep-
aware frequency regularization. In contrast, our method
successfully translates intricate high-frequency style tex-
tures, such as hairs details (see Figure 3(e), Row 2) and
seal skin (Row 4) while preserving low-frequency structure
fidelity, like the mountain ridgeline (Row 3). Our progres-
sive spectrum regularization strikes a balance between high-
frequency style transfer fidelity and low-frequency content
preservation.

E.2. Effects of Loss Weight λ Study

The strength of the explicit identity regularization term is
determined by the loss weight λ. As shown in Figure 4,
increasing λ enhances content fidelity, while reducing it al-
lows for stronger stylization, demonstrating a clear trade-off
between style and content. It provides a user-controllable
knob for adjusting the stylization strength.

F. More Qualitative Comparisons

We present additional qualitative comparisons with five
state-of-the-art methods. As shown in Figure 6, SMS
achieves superior content preservation, maintaining struc-
tural integrity and ensuring a harmonious color balance, all
while delivering comparable stylization results.

G. Additional Results

We provide additional examples of images generated by
SMS on the DIV2K dataset [2] to showcase its superior
high-quality balanced stylization ability across different
styles. Figures 7, 8, 9, 10, 11, 12 displays stylizations in
watercolor, oil painting, Ghibli, Ukiyo-e, kids illustration
and sketch styles, respectively.

H. Limitations

Despite the promising results, our method has certain limi-
tations. SMS relies on style-specific LoRAs, and if a LoRA
lacks sufficient content diversity, especially for specific ob-
ject categories, distortions may occur. For example, using
an oil painting style LoRA that trained with few or no im-
ages of jellyfish can result in stylized outputs where jellyfish
are inaccurately transformed into other objects, such as hu-
man figure (see Figure 5(a)). This issue arises because the
LoRA has not learned appropriate representations for those
unseen or underrepresented content types. Increasing the
content preservation parameter λ may mitigate this prob-
lem, albeit at the cost of reduced stylization strength.



Source Results

(a)

(b)

Figure 5. Certain failure cases. (a) oil painting style with text
prompt ysrc: a group of jellyfish floating on top of a body of water.
(b) watercolor style with text prompt ysrc: a jellyfish swimming in
the ocean.

I. Broader Impact

Our stylization framework has significant societal impacts.
Positively, it can enhance creativity in graphic design, an-
imation, and digital art, offering powerful tools for high-
quality style transfer. It also holds promise for personalized
education and immersive entertainment experiences.

However, we must be mindful of potential negative con-
sequences. Biases present in training datasets can propagate
through generative models, potentially amplifying societal
inequities. Furthermore, the ability to train a style-LoRA
with limited artistic works and use SMS to transform other
images into an artist’s style raises concerns regarding in-
tellectual property rights and copyright protection. Careful
ethical considerations and adherence to copyright laws are
crucial to mitigate these risks.
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Figure 6. Additional qualitative comparison between SMS (Ours) and five representative methods.



Source SourceResults Results

Figure 7. Watercolor style. The results capture the fluid and translucent qualities typical of watercolor paintings, with gentle color
gradients and soft edges.
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Figure 8. Oil painting style. The results reflect the rich textures and bold brushstrokes associated with oil paintings, emphasizing depth
and vibrancy.



Source SourceResults Results

Figure 9. Ghibli style. The results create a harmonious blend of realism and painterly artistry characteristic of Studio Ghibli, combining
intricate pre-designed brush-like strokes in the scenes.

Source SourceResults Results

Figure 10. Ukiyo-e style. The results reflect the essence of traditional Japanese ukiyo-e woodblock prints.



Source SourceResults Results

Figure 11. Kids illustration style. The results have playful and vibrant qualities typical of children’s illustrations, featuring simplified
shapes and bold outlines.

Source SourceResults Results

Figure 12. Sketch style. The results resemble hand-drawn sketches, featuring monochromatic tones and emphasized contours.
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