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7. Implementation Details
We use Stable Diffusion v2.1 for all methods. We employ
the prompt template “a photo of the face of a {occupation},

a person”. At inference time, for each bias, we generate
100 images per occupation across 100 occupations, result-
ing in a total of 10,000 images. We set ω = ε = 1, and train
for 1000 iterations with a learning rate of 1e-5. For gender
bias, we use the CelebA [12] dataset to train a binary clas-
sifier with two categories:{male,female}. For racial bias,
we use the FairFace [10] dataset to train a classifier with
the following four categories: WMELH={White, Middle
Eastern, Latino Hispanic}, Asian={East Asian, Southeast
Asian}, Black, and Indian. Please refer to supplementary
for more details. We also conduct experiments with other
versions of Stable Diffusion.

8. Compared Methods

Finetuning for Fairness (F4Fair) [30] is a retraining-based
approach with two main technical innovations: (1) a distri-
butional alignment loss that aligns specific attributes of gen-
erated images to a user-defined target distribution, and (2)
adjusted direct finetuning (adjusted DFT) of the diffusion
model’s sampling process, which uses an adjusted gradient
to directly optimize losses on generated images.
Inclusive Text-to-Image GENeration (ITI-GEN) [36] en-
hances fairness in text-to-image synthesis by incorporating
reference images. Instead of relying solely on text prompts,
ITI-GEN leverages visual exemplars to more effectively
represent attributes that are difficult to describe in words,
such as nuanced variations in skin tones. The key idea is to
learn prompt embeddings that guide the generation process,
ensuring balanced and inclusive outputs across different at-
tribute categories.
H-Distribution Guidance (H Guidance) [18] does not re-
quire retraining DMs. It introduces Distribution Guidance,
which ensures that generated images follow a prescribed at-
tribute distribution. This is achieved by leveraging the la-
tent features of the denoising UNet, which contain rich de-
mographic semantics, to guide debiased generation. They
also train an Attribute Distribution Predictor (ADP), a small
MLP that maps latent features to attribute distributions.
ADP is trained using pseudo labels generated by existing
attribute classifiers, allowing fairer generation with the pro-
posed Distribution Guidance.
Unified Concept Editing (UCE) [8] is a closed-form
parameter-editing method that enables the application of

numerous editorial modifications within a single text-to-
image synthesis model, while maintaining the model’s gen-
erative quality for unedited concepts.
Interpretable Diffusion [11] is a self-supervised approach
to find interpretable latent directions for a given concept.
With the discovered vectors, it further propose a simple ap-
proach to mitigate inappropriate generation.

9. More Visualization Results
We provide more visualization results about gender debais-
ing and racial debaising. The qualitative results in Figure 8
9 10 further demonstrate that our method(DebiasDiff) effec-
tively mitigates gender bias without compromising image
quality or semantic coherence.

The qualitative results in Figure 11 12 further verify that
our method outperforms others in reducing racial bias while
preserving both semantic similarity and image quality.

10. More Results on Scalability
FairGen is designed with modularity and efficiency in mind,
enabling scalable debiasing across multiple sensitive at-
tributes. Its scalability stems from two core design choices:
(1) a lightweight adapter architecture with linear complex-
ity, and (2) an inference-time composition mechanism that
avoids retraining or classifier dependency.
Linear Adapter Complexity. For k attributes with c
categories each, FairGen introduces O(kc) plug-and-play
adapters. These adapters are trained independently and only
the relevant ones are activated at inference time, ensuring
that the computational cost remains bounded and practical,
even as the number of attributes grows.
Training Efficiency. Each adapter is trained within 0.5
hours on a single A100 GPU. Even under multi-attribute
settings, the total training time remains competitive with
prior methods. As shown in Table 7, FairGen achieves
the lowest training time (1.0h) and identical inference
speed (6.2s) to the base diffusion model, demonstrating its
lightweight nature.

Table 7. Training and inference efficiency comparison.
Metric Original SD F4Fair ITI-GEN H Guidance InterDiff FairGen (Ours)

Training Time – 4.3 h 2.4 h 2.8 h 3.1 h 1.0 h
Inference Time 6.2s 6.8s 6.4s 7.1s 6.9s 6.2s

Inference Efficiency. During inference, FairGen intro-
duces negligible overhead by only activating the adapters
corresponding to the target attribute categories. As Table 7



Male Female

(a) original (b) debiased (Ours)
Figure 8. Images generated from the original SD (left) and Ours (right) for gender debias with prompt ‘A photo of a ceo’. Gendet ratio:
Male : Female = 13 : 2 → 7 : 8

Male Female

(a) original (b) debiased (Ours)
Figure 9. Images generated from the original SD (left) and Ours (right) for gender debias with prompt ‘A photo of a doctor’. Gendet ratio:
Male : Female = 12 : 3 → 8 : 7

Male Female

(a) original (b) debiased (Ours)
Figure 10. Images generated from the original SD (left) and Ours (right) for gender debias with prompt ‘A photo of a nusrse’. Gendet ratio:
Male : Female = 3 : 12 → 7 : 8

shows, its inference time matches that of the original Stable
Diffusion, while achieving superior fairness.

Scalability in Attribute Space. To evaluate FairGen’s
robustness in higher-dimensional fairness settings, we ex-
tend it to debias across four attributes: gender, race, age
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(a) original (b) debiased (Ours)
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Figure 11. Images generated from the original SD (left) and Ours (right) for race debias with prompt ‘A photo of a banker’. Racial group
distribution: WMELH : Asian : Black:Indian = 10:2:1:1 → 4:4:4:3

WMELH Black

(a) original (b) debiased (Ours)

Asian Indian

Figure 12. Images generated from the original SD (left) and Ours (right) for race debias with prompt ‘A photo of a professor’. Racial group
distribution: WMELH : Asian : Black:Indian = 8:1:5:1 → 4:4:4:3

(“young”, “middle-aged”, “old”), and body type (“thin”,
“medium”, “obese”). Table 8 shows that FairGen consis-
tently achieves low fairness discrepancy (FD) and maintains
visual quality (CLIPsim, FID, BRIS) with only minor degra-
dation, confirming its practical scalability.

Table 8. Scalability analysis of FairGen on four attributes.
Setting FD → CLIPsim ↑ FID → BRIS ↑

Gender 0.041 0.37 12.34 38.52
Gender+Race 0.042 0.37 13.18 38.33
Gender+Race+Age 0.044 0.36 13.95 38.41
Gender+Race+Age+Body Type 0.045 0.36 13.78 38.27

Orthogonality Regularization. FairGen applies orthog-
onality regularization to mitigate attribute interference dur-
ing training. While helpful, we observe that strict orthog-
onality is not essential for strong debiasing. Due to the
lightweight adapter structure, the additional cost introduced
by this regularization remains minor. In future work, scal-
ability can be further improved by applying orthogonality
selectively, e.g., only between interfering attribute groups

identified through data-driven analysis.
Overall, these results demonstrate FairGen’s ability to

scale to a broad range of fairness settings while maintain-
ing efficiency and quality, making it a practical solution for
large-scale fair image generation.
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