Geod4D: Leveraging Video Generators for Geometric 4D Scene Reconstruction

Supplementary Material

In this supplementary material, we provide additional
information to supplement our main submission. The code
is available here for research purposes:

6. Implementation Details

6.1. Training Dataset

As shown in Tab. 5, we use five synthetic datasets for train-
ing: Spring [50], BEDLAM [2], PointOdyssey [119], Tar-
TanAir [93], and VirtualKitti [6]. Although all datasets are
synthetic, we found that some depth pixels are missing in
PointOdyssey [119]. To address this, we apply max pooling
to inpaint the missing pixels. During training, we sample
each dataset according to the ratios in Tab. 5. For each sam-
ple, we select 16 frames from the sequence, with the sam-
pling stride randomly chosen from {1,2,3} to allow our
diffusion model to adapt to input videos with various frame
rates.

6.2. Optimization Details

The overall optimization process is outlined in Algorithm 1.
We first predict all three modality maps using our diffu-
sion model for each video clip g. The predicted point maps
are then roughly aligned based on the overlapping frames
using the Umeyama algorithm [84]. The camera intrin-
sic K is initialized by minimizing the projection error of
the point map X %9 " in its reference (first) frame k within
each window group ¢gF. The camera extrinsics are then
initialized using the RANSAC PnP algorithm. In the first
stage of optimization, the point maps are roughly disen-
tangled into camera pose and depth map. The disparity
map is then aligned with the global depth inferred from
point maps by solving Eq. (5) from the main paper to ob-
tain the scale and shift parameters. The camera parame-
ters extracted from the predicted ray map are aligned with
the global camera trajectory based on the reference (first)
frame of each video clip g via Eq. (8) from the main pa-
per. After initializing all the alignment learnable parame-
ters, including rotation RY, scale A\{, and shift 37 across
different modalities, where * € {p,d,c}, we jointly op-
timize all the learnable parameters by Eq. (10). Specifi-
cally, we set the weights for each loss term in Eq. (10) as
a1 =1, a0 = 2,a3 = 0.005, oy = 0.015 to roughly equal-
ize the scale of the different losses.

Algorithm 1 Multi-Modal Alignment Optimization

X f"g ,D%9 %9  Predicted by our diffusion model
D, A}, Ry, 37 + Initialized by Umeyama algorithm
K} « Optimized from X*9"

R}, 0, < Initialized by Ransac PnP from pointmaps X"

R5Y, 089 « Initialized by Eqs. (6) and (7) from raymaps
rH9

A T

6: repeat
7: if Iteration = Align start iteration then
8: A, BY < argmin L4 (Eq. (5))
9: R? )\, 32 < argmin L. (Eq. (8))
10: else if Iteration < Align start iteration then
11: D}, K}, R}, 05, A3, R}, 3§, argmin £, + L,
12: else
13: D}, K}, R}, 0., X!, R?, B¢ + argmin Lq
14: end if
15: until max loop reached

Dataset Scene type #Frames  #Sequences  Ratio
PointOdyssey [119]  Indoors/Outdoors 200K 131 16.7%
TartanAir [93] Indoors/Outdoors 1000K 163 16.7%
Spring [50] Outdoors 6K 37 16.7%
VirtualKITTI [6] Driving 43K 320 16.7%
BEDLAM [2] Indoors/Outdoors 380K 10K 33.3%

Table 5. Details of training datasets. Our method only uses syn-
thetic datasets for training.

Steps Video Depth Camera Pose
AbsRel| 0§ <1251 ATE| RPEtrans] RPErot/)
1 0.221 70.7 0.234 0.072 0.753
5 0.205 73.5 0.185 0.063 0.547
10 0.207 73.2 0.212 0.071 0.508
25 0.220 72.2 0.211 0.074 0.564

Table 6. Ablation study for the DDIM sampling steps. on the
Sintel [5] dataset.

7. Additional Analysis

7.1. Ablating the Number of Denoising Steps

We study the influence of the number of denoising steps
during inference. As shown in Tab. 6, the model achieves
optimal performance after around 5 steps. Compared to the
video generation task, where a larger number of denoising
steps usually produces a more detailed generated video, 4D
reconstruction is a more deterministic task, which requires
fewer steps. Similar phenomena are also observed in [22],
which uses a video generator for video depth estimation.
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Figure 5. Additional qualitative results. Our method generalizes well to various scenes with different 4D objects and performs robustly

against different camera and object motions.

Method Video Depth Camera Pose
AbsRel| §<1.251 ATE| RPEtrans] RPErot|
wi/o fine-tuned 0.212 72.1 0.192 0.061 0.577
w fine-tuned 0.205 73.5 0.185 0.063 0.547

Table 7. Ablation study for the fine-tuned point map VAE on
the Sintel [5] dataset. The fine-tuned point map VAE performs
better than the original one.

7.2. Ablation Study for Fine-Tuned Point Map VAE

As stated in the main paper, we added an additional branch
to predict the uncertainty for our point map VAE and fine-
tuned it based on Eq. 3. We perform an ablation study on
our fine-tuning strategy. As shown in Tab. 7, our fine-tuned
point map VAE achieves consistently better performance on
both video depth estimation and camera pose estimation
tasks compared with the original pre-trained image VAE,
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Figure 6. Visualization of different geometric modality maps.

demonstrating the necessity and effectiveness of our fine-
tuning strategy.

7.3. Analysis of Multi-Modal Representation

Point maps (PMs) and disparity maps (DMs) are comple-
mentary. DMs better represent near objects, while PMs are
more depth-agnostic (e.g., human vs house in Fig. 6 (b,c)).
As in prior work, DMs are affine invariant (which here
makes them range-compatible with the pretrained RGB
VAE); their scale and shift, needed to recover undistorted
geometry, are inferred by matching them to the predicted
PMs. Ray maps (RMs) help infer the camera pose when
PMs fail to represent points at infinity (such as the sky in
Fig. 6 (e)). We observed that PMs tend to be noisier than
DMs, so we prioritized modeling the PMs’ uncertainty. Per-
pixel uncertainty for ray maps are less meaningful given the
high degree of correlation between individual rays. During
multi-modal alignment, we align global point clouds with
DMs in disparity space and with PMs in linear space. This
naturally gives more weight to near points, which tend to be
estimated well by DMs, and weighs points based on uncer-
tainty with PMs, thus taking advantage of both modalities.

8. Visualization

Figure 5 shows additional visualizations for indoor, out-
door, and driving scenes. Although our model is only
trained on synthetic datasets, it generalizes to real-world
data with diverse objects and motions.

9. Limitations

Although our method performs well and generalizes to a
wide range of in-the-wild videos, it can struggle in cases in-
volving significant changes in focal length or extreme cam-
era motion throughout a sequence. This limitation likely
stems from the lack of focal length variation in our train-
ing data. Incorporating more sequences with diverse cam-
era movements and zooming effects could help mitigate this
issue. Moreover, due to the inherent temporal attention
mechanism in our network architecture, our approach cur-
rently supports only monocular video input. Extending the
method to handle multi-view images or videos is a promis-
ing direction for future work.
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