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A. Additional Implementation Details

We implement our InfiniteYou (InfU) framework using Py-
Torch and leverage the Hugging Face Diffusers library. The
DiT base model is FLUX.1-dev [11]. We set the multiplica-
tion factor ¢ = 4 for InfuseNet. The projection network is
derived from [18], with the token number of the projected
identity feature set to 8. All experiments are conducted us-
ing FSDP [21] on NVIDIA H100 GPUs, each with 80GB
VRAM. We use the AdamW [16] optimizer with 5; = 0.9
and B3 = 0.999. The weight decay is set to 0.01. We em-
ploy Conditional Flow Matching [5, 14] as the loss function
with logit-normal sampling [5] of r£/lognorm(0.00,
1.00) . For stage-1 pretraining, the model is trained using
an initial learning rate of 2 x 1075 on 128 GPUs. The to-
tal batch size is set to 512, and stage-1 training spans 300k
iterations. For stage-2 supervised fine-tuning, the model is
trained with an initial learning rate of 1 x 10~° on 64 GPUs,
with a total batch size of 256. All other settings remain un-
changed.

B. Dataset Details

For stage-1 pretraining, we use a total of nine open source
datasets, including VGGFace2 [2], MillionCelebs [20],
CelebA [15], CelebV-HQ [22], FFHQ [8], VFHQ [17],
EasyPortrait [10], CelebV-Text [19], CosmicManHQ-
1.0 [13], as well as several high-quality internal datasets.
We perform careful data pre-processing and filtering, re-
moving images with low-quality small faces, multiple faces,
watermarks, or NSFW content. The data is pre-processed
for training using aspect ratio bucketing [1]. The total
amount of single-person single-sample (SPSS) real data for
stage-1 pre-training reaches 43 million, which we consider
sufficient for large-scale training of identity-preserved im-
age generation models. For stage-2 supervised fine-tuning,
the total quantity of single-person-multiple-sample (SPMS)
synthetic data is 2 million. All data is generated by the
stage-1 pretrained InfU model itself, equipped with useful
off-the-shelf modules (see Section 3.3). High-quality syn-

thetic data are also carefully processed and filtered to ob-
tain image pairs with normal poses, high ID resemblance,
and good aesthetics, ensuring their usefulness. In addition,
we observe that training the model with a mixture of cap-
tions from multiple sources, e.g., humans, small captioning
models, and large vision-language models (VLMs), is ben-
eficial. Besides the original captions in the datasets, we em-
ploy BLIP-2 [12] and InternVL2 [3] to obtain text captions
from diverse sources for training.

C. Evaluation Details

We conduct evaluations on a portrait benchmark created
by GPT-4o [7], comprising 200 prompts and correspond-
ing gender information. This benchmark covers a vari-
ety of cases, including different prompt lengths, face sizes,
views, scenes, ages, races, complexities, efc. We selected
15 representative identity samples and paired their gen-
der with all appropriate prompts, resulting in 1,497 testing
outputs for systematic evaluations. We apply three repre-
sentative and useful evaluation metrics, i.e., ID Loss [4],
CLIPScore [6], and PickScore [9]. ID Loss is defined as
1 — CosSim (IDgep, IDyer), where CosSim is cosine sim-
ilarity, and IDg, and ID, are the generated and refer-
ence identity images, respectively. A lower ID Loss means
higher similarity. We follow the original papers to use
CLIPScore and PickScore. A higher CLIPScore indicates
better text-image alignment, and a higher PickScore signi-
fies better image quality and aesthetics.

D. Limitations and Societal Impacts

Despite promising results, the identity similarity and overall
quality of InfU could be further improved. Potential solu-
tions include additional model scaling and an enhanced In-
fuseNet design. On another note, InfU may raise concerns
about its potential to facilitate high-quality fake media syn-
thesis. However, we believe that developing robust media
forensics approaches can serve as effective safeguards.
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