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This supplementary material is organized as follows:

e Sec. 1 provides more detailed information of our pro-
posed See-in-the-Extremely-Dark (SIED) dataset.

* Sec. 2 provides a more comprehensive analysis of our
method and the recently published diffusion-based low-
light RAW2RAW image enhancement method Expo-
sureDiff [19].

¢ Sec. 3 presents the limitation of our method.

» Sec. 4 conducts more experiments including real-world
generalization analysis, cross-sensor generalization anal-
ysis, detailed ablation studies of our proposed AICM, and
computational efficiency analysis.

e Sec. 5 provides more qualitative results on our proposed
SIED dataset, the SID [2] dataset, and the results on the
realistic extremely dark scenes.

1. More Details of the SIED Dataset
1.1. Noise Addition

In realistic scenes, the noise distribution can be divided
into signal-dependent noise and signal-independent noise,
where the signal-dependent noise follows the Poisson dis-
tribution and previous works typically treat the signal-
independent noise as the Gaussian distribution [5, 6]. To
this end, we first fit the Gaussian N and Poisson N p noise
distributions under various ISO values in the optical labora-
tory following [ 18], where the estimated noise parameters k
and o2 of the Sony o/7RIII and Canon EOS R cameras are il-
lustrated in Fig. S1. With the ISO-k and ISO-02 curves well
fitted, the noise parameters under any ISO setting can be
easily calculated, thus satisfying the requirements for syn-
thesizing noisy data.

However, the noise model under extremely low-light
conditions should not be considered a pure P+G model [21,
24]. Therefore, we additionally construct the dark-frame
database Np as shown in Fig. S2 (b) based on the dark
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Figure S1. The estimated noise parameters ISO-k and ISO-o2
curves of the Canon EOS R and Sony o7RIII cameras.

frames used for Gaussian noise calibration to better sat-
isfy the characteristics of realistic noise distribution follow-
ing [24], where the 10 dark frames are captured for each
ISO and the noise types that are hard to model explicitly,
such as dark current noise, fixed pattern noise, and row
noise, are all accumulated and saved in the shooting of the
dark frames. Overall, the calibrated noise model can be for-
mulated as Ny;; = Ng + Np + Np. Finally, we adopt the
ISO-dependent noise addition strategy [18] to apply the cal-
ibrated noise model within various ISO values to construct
realistic noisy images. As shown in Fig. S2, we illustrate
the noise addition pipeline with an equivalent ISO of 6400
for Sony subset image generation.
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Figure S2. Illustration of the noise addition pipeline for Sony sub-
set image synthesis with the illuminance of 0.01-0.1lux at ISO
6400, where (a) and (d) show the illumination-aligned images and
the final noisy images which are visualized by a simple demosaic-
ing process with a fixed amplification factor x100. (b) presents
the dark-frame database and the sampled noise Np, (c) presents
the estimated ISO-k and ISO-o2 curves and the sampled Gaussian
N¢ and Poisson Np noise.

Table S1. The KL divergence () of illumination histogram distri-
butions between the images synthesized by our strategy and previ-
ous strategies [1, 12, 20, 23] and laboratory images.

| 0.01-0.1Tux | 0.001-0.01 lux | 0.0001-0.001 lux

‘ Canon

Method

Sony ‘ Canon  Sony ‘ Canon  Sony

Previous | 0.165 0.166 | 0.227 0.147 | 0.216  0.339
Ours 0.017 0.011 | 0.018 0.009 | 0.011 0.059

1.2. Compare with Previous Synthesis Strategies

Previous dataset synthesis approaches [1, 12, 20, 23] typi-
cally generate low-light images by degrading the illumina-
tion of normal-light images, which inadequately captures
the imaging characteristics of realistic dark scenes. To this
end, we present a paired-to-paired data synthesis strategy to
generate well-calibrated extremely dark images from col-
lected real-world low-light data.

To validate the superiority of our data synthesis pipeline,
we employ the illumination alignment and noise addition
processes in Sec.3 of the main paper to transform the col-
lected normal-light images into low-light counterparts fol-
lowing previous approaches, and endeavor to align the illu-
mination distributions of the synthesized images consistent
with standard images. However, the illumination distribu-
tion of low-light images synthesized from normal-light im-
ages is difficult to align with the standard image, as shown
in Fig. S3. The KL divergence (}) of illumination his-
togram distributions between the synthesized images ob-
tained in the above approach and laboratory images is at
least 10 times over our paired-to-paired synthesis strategy,
as reported in Table S1.
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Figure S3. Comparison of images generated by previous data syn-
thesis strategies [1, 12, 20, 23] and our strategy.
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1.3. Align with Standard Data

As we described in Sec. 3 in the main paper, we adopt a
fixed ISP pipeline to transform the generated RAW image
and standard images into YUV space, and manually fine-
tune 7 in Eq.(1) to match the illumination histograms of the
two images in the Y channel. As shown in Fig. S4, we
present several samples of illumination histograms for our
generated images and standard laboratory images. More-
over, we employ fixed amplification factors, i.e., x 100,
%200, %300, and x500, to improve the contrast of the low-
light RAW images followed by a simple demosaicing pro-
cess for visualization. As we can see, our generated images
are quite approaching the standard data in terms of both illu-
mination distribution and subjective visualization, proving
that our paired-to-paired data synthesis strategy is capable
of generating realistic extremely low-light images.

2. More Detailed Analysis

In this section, we provide an analysis of our method and

the recently published diffusion-based RAW2RAW image

enhancement method ExposureDiff [19].

* ExposedDiff targets RAW2RAW image enhancement
that only takes exposure correction and denoising in the
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Figure S4. Illustration of illumination histograms for our generated images and standard images, as well as the visualization results with
various fixed amplification factors, i.e., X100, x200, x300, and x500.

Time=10s, 1S0=100 Time=20s, 1S0=100 Time=30s, 1S0=100 practical to obtain high-quality reference images in realis-
tic extremely dark scenes. As shown in Fig. S5, the high-
quality normal-light images are unable to be obtained
in the realistic extremely dark scene even with exposure
times as long as 30 seconds. To this end, we propose an
Adaptive Illumination Correction Module (AICM) to es-
timate the amplification factor from the low-light RAW
feature without relying on the reference images.

* Our method designs a color consistency loss to facilitate
the diffusion model to generate reconstructed sRGB fea-
tures with vivid color, while ExposureDiff focuses on im-
age enhancement in the RAW domain without consider-
ing the color mapping in the RAW2RGB process.

Time=10s, ISO=300 Time=20s, 1ISO=300 Time=30s, 1ISO=300

Figure S5. Capturing images in the realistic extremely dark scene
using various camera parameters. These images are in SRGB for-
mat produced by camera default ISP in a 0.0011ux-0.011lux scene.

RAW domain into account. In contrast, our method
aims to transform low-light noisy RAW images into well-

exposed high-quality sSRGB images, which not only takes To validate the advantages of our method over Expo-
into account exposure correction and denoising but also sureDiff, we have modified our framework to RAW2RAW
the complex ISP processes modeling, thus being more image enhancement and conducted experiments on the
challenging than the RAW2RAW image enhancement. Sony subset of the SID [2] dataset following the settings
* For exposure correction, ExposureDiff follows the previ- of ExposureDiff. As shown in Table S2, our method
ous methods [2, 3, 8] that utilizes the exposure values of also achieves performance superior to ExposureDiff, further

GT images as a prior for amplification. However, it is im- proving the effectiveness of our method.



Table S2. Quantitative results of our method and ExposureD-
iff [19] for RAW2RAW image enhancement on the Sony subset
of the SID [2] dataset. The best results are highlighted in bold.

Ratio ‘ Metric ‘ExposureDiff [19] Ours

PSNR 38.89 39.44
x100 | SSIM 1 0.902 0.921
PSNR 36.02 36.37
X250 | SSIM 1 0.832 0.843
PSNR 1 35.00 35.19
%300 | sSIM ¢ 0.808 0.814

(a) The result in the scene with 0.0001-
0.001 lux and ISO=40000

(b) The result of our method in the real-
world scene below 0.0001 lux

Figure S6. The results of our method in the scene with 0.0001-
0.001 Iux and ISO=4000 (a) and the scene below 0.0001 lux (b).

3. Limitations

Even our method works well on most scenes, while detail
blurring may occur under extremely low-light and high-
noise conditions, as shown in Fig. S6(a). Moreover, as
shown in Fig. S6(b), our method still retains its capabil-
ity in real-world dark scenes below 0.0001 lux. However,
the result remains suboptimal due to the extremely limited
content information and more severe degradation. Solving
such ultra-dark scenes will be our future work. Another lim-
itation of our method lies in the inference efficiency since
diffusion-based methods iteratively denoise the randomly
sampled Gaussian noise to obtain reconstructed results in
the inference phase, leading to the inference speed being af-
fected by the sampling step. Therefore, our method shows
inferior efficiency compared to some lightweight methods,
as discussed in Sec. 4.4. In the future, we will explore more
effective sampling strategies, such as DPM-Solver [13] and
the consistency model [16], to improve inference efficiency
and investigate the effectiveness of our method for ex-
tremely low-light RAW video enhancement.

4. More Experiments

4.1. Real-world Generalization

As we mentioned in the main manuscript, we collect sev-
eral images in realistic extremely dark scenes using the
Sony camera and determine their illuminance level accord-
ing to the matching of the illumination histograms in the
Y-channel to standard laboratory images, containing 11 im-
ages with the range of 0.01-0.1 lux, 13 images with the
range of 0.001-0.01 lux, and 6 images with the range of
0.0001-0.001 Iux. To validate the generalization ability of
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Figure S7. The Cross-sensor generalization results on the iPhone
image of DNF [8], RAWMamba [3], and our method that are
trained on the Sony subset of the SIED dataset.

0.0001-0.001 lux RAWMamba (x100) RAWMamba (x200) RAWMamba (x300)

Figure S8. Qualitative comparison of RAWMamba [3] with vari-
ous amplification factors and our method on the realistic scene.

our method, we adopt three non-reference perceptual met-
rics NIQE [15], MUSIQ [9], and CLIPIQA [17] to measure
the visual quality of the restored results of our method and
comparison methods. As reported in Table S3, our method
achieves the best MUSIQ and CLIPIQA scores in all three
illuminance ranges, proving the effectiveness of the pro-
posed method and our synthesized dataset is capable of sup-
porting methods to generalize to real-world scenes.

4.2. Cross-sensor Generalization

To validate the generalization ability of the methods trained
on our SIED dataset to images captured by other sensors,
we apply the model trained on the Sony subset of the
SIED dataset to restore the realistic dark images captured
by iPhone 6s [2]. As shown in Fig. S7, the restored results
of our method and previous methods DNF [8] and RAW-
Mamba [3] present property contrast, low noise, and vivid
color, demonstrating the methods trained on our dataset per-
form well in cross-sensor generalization.

4.3. More Detailed Results of the Ablation Study

In this section, we conduct more detailed experiments to
evaluate the effectiveness of our proposed Adaptive Illumi-
nation Correction Module (AICM). We use the implemen-
tation details described in Sec. 5.1 of the main paper for
training, and quantitative results on the Sony subset of the
SID [2] dataset are illustrated in Table S4. Detailed experi-
ment settings are discussed below.

We first remove the proposed AICM from the overall
framework, as shown in row 1 of Table S4, which would
cause overall performance degradation. Then, we adopt
fixed amplification factors (Amp.) of 100, 200, and 300 to
improve the contrast of the input RAW images, as shown
in row 2-4 of Table S4, while such constant amplification
factors are unable to achieve satisfactory exposure improve-
ment in realistic scenes where the illumination degradation
is diverse and unknown. Meanwhile, we follow previous
methods [2, 3, 7, 8, 11, 14] to employ the exposure infor-



Table S3. Non-reference perceptual metrics of our method and comparison methods on the realistic extremely dark scenes. The best results

are highlighted in bold and the second-best results are in underlined.

| | 0.01-0.1 lux | 0.001-0.01 lux | 0.0001-0.001 Iux
| Method | NIQE| MUSIQt CLIPIQAT | NIQE| MUSIQt1 CLIPIQA{ | NIQE| MUSIQt CLIPIQA ¢
SID [2] 7359 23122 0.284 7788 22.484 0.286 8.654 20458 0.253
DID [14] 7642 24423 0.251 8365 22392 0.238 8750  21.429 0.227
Single-stage | SGN[7] 7.386  24.380 0.302 8486 22464 0.288 8.983 21461 0.268
LLPackNet[11] | 8.636  22.684 0.259 9.260  22.163 0.261 10.096  20.380 0.260
RRT [10] 8.082  21.199 0.263 8492 20739 0.277 9.875  19.642 0.259
LDC [22] 9.051  21.374 0.275 10.504  19.866 0.239 12438 19.657 0.273
MCR [4] 7913 23.703 0.271 8.897 22958 0.274 9.440 20816 0.256
Multi-stage | DNF [8] 7712 23.855 0.288 8912 22769 0.276 8451 21339 0.256
RAWMamba [3] | 7.354 23318 0.276 8.044 22075 0.283 8489  21.826 0.266
Ours 7654 24.694 0.321 7403 23.031 0.314 8480 21913 0.312

Table S4. Quantitative results of ablation studies on the Sony sub-
set of the SID [2] dataset. ‘w/0’ denotes without.

| Method | PSNR1? SSIM 1 LPIPS |
1)) ‘ w/o AICM ‘ 30.02 (145 0785 (0169 0.369 (40.030)
2) | Amp. =100 | 3091 (.9 0.794 (07, 0.351 (40.012)
3) | Amp. =200 | 30.77 (.43 0.798 (003  0.349 (10010
4) Amp. = 300 3063 (—0.57) 0793 (—0.008) 0355 (4+0.016)
5) ‘ GT exposure ‘ 31.29 (0.00) 0806 (10005 0.333 (0006
6) ‘ default ‘ 31.20 (;0.00)  0.801 (10.000) 0.339 (. 0.000)

mation of GT images as priors to amplify the input low-
light RAW images. As shown in rows 5-6 of Table S4,
our AICM presents comparable performance compared to
adopting GT exposure for pre-amplification, which is un-
likely to be available in practical applications, demonstrat-
ing the effectiveness of our proposed AICM.

Furthermore, for previous methods [2, 3, 8, 11, 14] rely
on the ratio between the exposure time of normal/low-light
images as a prior for amplification during the training stage,
we use the ratio of mean values between paired images as
the factor in [10.6, 565.8] for retraining on our SIED dataset
and apply fixed amplification factor for evaluation in the re-
alistic dark scenes as in SID [2]. As shown in Fig. S8, we
also apply various factors to RAWMamba [3] for inference
in the realistic scenes, where different factors would bring
different exposure levels, while it is impractical to adapt
proper factors to variable scenes, while our well-designed
AICM can achieve adaptive exposure correction, further
proving the effectiveness of our AICM.

4.4. Computational Efficiency

In this section, we report the inference time and memory
consumption of our method and comparison methods on
NVIDIA A100 GPU when performing inference on the test
set of our proposed SIED dataset, where the input RAW
images are with the resolution of 3,840%2,160. As reported

Table S5. Run time (Time) and memory consumption (Mem.) of
our method and comparison methods on NVIDIA A100 when per-
forming inference on an image with 38402160 resolution.

| SID[2] DID[14] SGN[7] LLPackNet[l1] RRT[I0]
Time (s) 0.053 0.393 0.066 0.026 0.033
Mem. (GB) | 4.166 9.119 3.090 1.676 1.838

| LDC[22] MCR[4] DNF[8] RAWMamba[3]  Ours
Time (s) 0.275 0.094 1.143 1.935 0.951
Mem. (GB) | 14.76 7.117 7.395 38.164 7.736

in Table S5, the computational efficiency and memory con-
sumption of our method are 0.951s and 7.736GB, respec-
tively, which is inferior to lightweight methods, such as
LLPackNet [11] and RRT [10], while our method achieves
considerable performance improvements over them. More-
over, compared with recently published state-of-the-art
competitors DNF [8] and RAWMamba [3], our approach
achieves advantages in computational resource consump-
tion and inference speed, especially compared to RAW-
Mamba with a significant reduction in memory consump-
tion, while achieving performance superior.

5. More Qualitative Results

We present more visual comparisons of our method and
comparison methods on each illuminance level of the Canon
and Sony subsets of our proposed SIED dataset in Fig. S9,
Fig. S10, Fig. S11, Fig. S12, Fig. S13, and Fig. S14. As
we can see, previous methods [2-4, 7, 8, 10, 11, 14, 22]
encounter unexpected artifacts, color distortion, or noise
amplification. In contrast, our method properly improves
global and local contrast, reconstructs sharper details, and
presents vivid color, resulting in visual pleasant results.

We also provide the visual comparisons of our method
and comparison methods on the Sony subset of the SID
dataset, as illustrated in Fig. S15. Our method does not use
the GT exposure as a prior for pre-amplification while gen-
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Figure S9. Qualitative comparison of our method and comparison methods [2—4, 7, 8, 10, 11, 14, 22] on the Canon subset of our SIED
dataset at the illuminance range of 0.01-0.1 lux. The input RAW images are visualized by a simple demosaicing process.

erating results closer to reference sSRGB images, proving
the effectiveness of our approach. Moreover, we provide
the restored results of our method and comparison method
on the realistic extremely dark scenes in Fig S16, where
all methods are capable of transforming realistic extremely
low-light inputs into normal-light SRGB images while our
method demonstrates superior performance.
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Figure S10. Qualitative comparison of our method and comparison methods [2—4, 7, 8, 10, 11, 14, 22] on the Canon subset of our SIED
dataset at the illuminance range of 0.001-0.01 lux. The input RAW images are visualized by a simple demosaicing process.

[13] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Deep retinex decomposition for low-light enhancement. In
Li, and Jun Zhu. Dpm-solver: A fast ode solver for diffusion BMVC, 2018. 2
probabilistic model sampling in around 10 steps. In NeurIPS, [21] Kaixuan Wei, Ying Fu, Yingiang Zheng, and Jiaolong Yang.
pages 5775-5787, 2022. 4 Physics-based noise modeling for extreme low-light photog-
[14] Paras Maharjan, Li Li, Zhu Li, Ning Xu, Chongyang Ma, raphy. IEEE TPAMI, 44(11):8520-8537, 2021. |
and Yue Li. Improving extreme low-light image denoising [22] Ke Xu, Xin Yang, Baocai Yin, and Rynson WH Lau.
via residual learning. In ICME, pages 916-921, 2019. 4, 5, Learning to restore low-light images via decomposition-and-
6,7,8,9,10, 11, 12 enhancement. In CVPR, pages 2281-2290, 2020. 5, 6, 7, 8,
[15] Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Mak- 9,10, 11
ing a “completely blind” image quality analyzer. IEEE Sign. [23] Wenhan Yang, Wenjing Wang, Haofeng Huang, Shigi Wang,
Process. Letters, 20(3):209-212, 2012. 4 and Jiaying Liu. Sparse gradient regularized deep retinex
[16] Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya network for robust low-light image enhancement. /EEE TIP,

Sutskever. Consistency models. In ICML, pages 32211- 30:2072-2086, 2021. 2
30252,2023. 4 [24] Yi Zhang, Hongwei Qin, Xiaogang Wang, and Hongsheng
[17] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Ex- L1 Rethinking noise synthesis and modeling in raw denois-
ploring clip for assessing the look and feel of images. In ing. In ICCV, pages 4593-4601, 2021. 1
AAAI pages 2555-2563,2023. 4
[18] Yuzhi Wang, Haibin Huang, Qin Xu, Jiaming Liu, Yiqun
Liu, and Jue Wang. Practical deep raw image denoising on
mobile devices. In ECCV, pages 1-16, 2020. 1
[19] Yufei Wang, Yi Yu, Wenhan Yang, Lanqing Guo, Lap-Pui
Chau, Alex C Kot, and Bihan Wen. Exposurediffusion:
Learning to expose for low-light image enhancement. In
ICCV, pages 12438-12448,2023. 1,2, 4

[20] Chen Wei, Wenjing Wang, Wenhan Yang, and Jiaying Liu.



0.0001-0.001 lux j : 1= i
E EEES iEEEQEZE!
=¥ [ [ iT y 3 ‘7 T i i EamAE
BEREECEE

(a) Input RAW
| EEENCCCCD

(Fw— l
"m—n

fmamal ]

(g) LDC (h) MCR (i) DNF (j) RAWMamba (k) Ours (1) Reference

Figure S11. Qualitative comparison of our method and comparison methods [2—4, 7, 8, 10, 11, 14, 22] on the Canon subset of our SIED
dataset at the illuminance range of 0.0001-0.001 lux. The input RAW images are visualized by a simple demosaicing process.
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Figure S12. Qualitative comparison of our method and comparison methods [2—4, 7, &, 10, 11, 14, 22] on the Sony subset of our SIED
dataset at the illuminance range of 0.01-0.1 lux. The input RAW images are visualized by a simple demosaicing process.
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Figure S13. Qualitative comparison of our method and comparison methods [2—4, 7, 8, 10, 11, 14, 22] on the Sony subset of our SIED
dataset at the illuminance range of 0.001-0.01 lux. The input RAW images are visualized by a simple demosaicing process.



0.0001-0.001 lux

B
(c) DID

(g) LDC (i) DNF 1) Reference

Figure S14. Qualitative comparison of our method and comparison methods [2—4, 7, 8, 10, 11, 14, 22] on the Sony subset of our SIED
dataset at the illuminance range of 0.0001-0.001 lux. The input RAW images are visualized by a simple demosaicing process.
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Figure S15. Qualitative comparison of our method and comparison methods [2—4, 7, 8, 10, 11, 14, 22] on the Sony subset of the SID [2]
dataset. The input RAW images are visualized by a simple demosaicing process.
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Figure S16. Qualitative comparison of our method and competitive methods [2—4, 7, 8, 10, 11, 14] on real-world extremely dark scenes.



