
Moderating the Generalization of Score-based Generative Model

Supplementary Material

1. Compatible with Moderated DDPM
Denoising Diffusion Probabilistic models (DDPMs) [17,28]
are a type of generative model that generate samples from
a distribution via an iterative Markov denoising method.
Initially, a sample xT is drawn from a Gaussian distribution
and subsequently denoised over T time steps, ultimately
resulting in a clean sample x0. During the training phase,
the model learns to predict the noise ϵθ(xt, t) that needs to be
removed from the sample xt using the following reweighted
variational bound:
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While our method, MSGM, is primarily designed for score-
based generative models, it is also compatible with DDPM
models. According to the relationship between score and
ϵθ(xt):

∇x log pθ(xt) = − 1√
1− ᾱt

ϵθ(xt), (3)

we derive the following unlearning method by applying our
method within the DDPM framework.

Orthogonal-MSGM for DDPM
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Obtuse-MSGM for DDPM
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Similarly, the final loss of unlearning DDPM modeling can be
solved by Eq.(9).

2. Impact of Forgetting Data Proportion
To further evaluate the robustness of our approach, we conducted
additional experiments to examine the impact of reducing the pro-
portion of the forgetting dataset Df on the method’s effectiveness.
Specifically, we performed experiments on the MNIST dataset us-
ing the VE SDE model, with digits ‘3’ and ‘7’ designated as the

Table 1. Results of different ratios of Df on the MNIST Dataset.
ratio=1 means 100% removing forgetting data from the training
dataset, ratio= 0 means Standard traning.

ratio Class UR(%) (↓) NLL Test ratio Class UR(%) (↓) NLL Test

1.0
3 0.4 Dg 3.92 0.8

3 2.3 Dg 3.937 0.8
Df 13.23

7 3.5
Df 6.353 and 7 1.2 3 and 7 5.8

0.6
3 3.6 Dg 3.93 0.4

3 6.8 Dg 4.097 6.5
Df 4.17

7 9.2
Df 4.173 and 7 10.1 3 and 7 16.0

0.2
3 6.5 Dg 4.34 0

3 11.0 Dg 2.827 11.3
Df 4.38

7 15.8
Df 2.783 and 7 17.8 3 and 7 26.8

NSFG data to be forgotten. In these experiments, we use 80%,
60%, 40% and 20% of Df for training, while the remaining 20%,
40%, 80% and 60% are included in the remaining dataset Dg . The
results in Tab. 1 demonstrate that reducing the proportion of the
NSFG data Df weakens the unlearning effectiveness, as indicated
by higher UR and lower NLL values on Df . However, the model’s
performance on the dataset Dg remains stable, highlighting its abil-
ity to recover generalization. Compared to the Standard approach
(ratio = 0), the MSGM mechanism consistently achieves better
unlearning, even with reduced Df .

3. Optimization Choices

In Sec.4.5, we discuss the selection of optimization strategies. Con-
sidering the different optimization approaches for Df and Dg , we
conduct experiments on the MNIST dataset, and the loss curves for
the two strategies are shown in the Fig. 1 and Fig. 2 .

The top row of Fig. 1 illustrates the results when Orthogonal-
MSGM uses a Simultaneously Updating strategy. It is evident that
this approach fails to effectively minimize the loss for both Df

and Dg . Specifically, although the losses of Df and Dg exhibit
stability, the final stable values remain significantly high. This
indicates that the model fails to learn meaningful content under this
strategy. Moreover, in the case of Obtuse-MSGM (as shown in the
second row of the Fig. 1), the loss of Df (i.e., Lf ) reaches very
small negative values due to being easier to optimize. This, in turn,
hinders the convergence of Lg because the overall optimization
prioritizes minimizing Lf , thereby neglecting the optimization of
Lg .

To address this issue, we adopt a strategy where Lf is updated
every four steps instead of being synchronized with Lg . This asyn-
chronous approach significantly improves optimization, as shown
in Fig. 2. The loss for Df stabilizes, and Lg decreases consistently,
indicating that the model effectively learns useful content. This
strategy balances the optimization process and avoids the pitfalls
of synchronous updates, leading to better overall performance.



Figure 1. Loss curves for Simultaneously Updating strategy showing instability in both Lf and Lg , resulting in poor optimization and
degraded model performance.

Figure 2. Loss curves for Alternative Updating strategy (updating Lf every four steps), demonstrating stable optimization and effective
learning for both Df and Dg .

Figure 3. Additional visualization results on three datasets using MSGM for unconditional generation

Figure 4. Failure cases of unlearning in unconditional generation.
On CIFAR-10, Df includes ‘dog’ and ‘automobile’, where high
visual similarity (e.g., ‘dog’ vs. ‘cat’ or ‘automobile’ vs. ‘car’)
leads to incomplete unlearning. On STL-10, Df includes ‘airplane’,
causing anomalies in ‘bird’ and ‘ship’ generation.

4. Visual Results and Failure Analysis
Our approach demonstrates effectiveness, though we observe lim-
ited failure cases, as shown in Fig. 4. These rare instances highlight
challenges in disentangling overlapping features and provide in-
sights for future refinement. Additional visual results in Fig. 5 and
Fig. 6 further validate the robustness of our method in generating
data while unlearning undesirable content. Experiments across di-
verse tasks confirm the flexibility and effectiveness of our approach,
showcasing its broad applicability.



Figure 5. Additional visualization results comparing different unlearning methods on the Imagenette dataset for test-to-image generation
task.

Figure 6. Additional results of inpainting and reconstruction, highlighting the model’s success in unlearning target categories while
maintaining image quality.
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