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A. Experimental Details

In this section, we introduce more details of RayZer.

Objaverse Data Details. We render Objaverse as contin-

uous videos for training and evaluation. The frames are

rendered with corresponding cameras on a unit sphere with a

constant distance to the object center. Specifically, we render

about 70 frames for azimuth 0◦ to 360◦, where the elevation

is randomly sampled between -20◦ to 60◦ for each shape

instance. We sample frames with the distance between the

first frame and the last frame being 50 to 65, covering the

camera azimuth rotation for about one cycle.

Camera Interpolation Details. For the experiment of inter-

polating predicted cameras, we use Spherical Linear Inter-

polation (Slerp) for interpolating the camera pose rotation.

This is based on the fact that the camera of Objaverse is

moving at a constant speed. Thus, Slerp ensures the correct

rotation interpolation. We then find the location on the unit

sphere that corresponds to this interpolated rotation angle.

Thus, we ensure the interpolated cameras are still on the

unit sphere, which matches the camera sampling rule for

rendering. In conclusion, this interpolation assumes that 1)

the camera is moving in a constant speed, and 2) the rule of

sampling camera location is known. Thus, this interpolation

is only applicable to the synthetic Objaverse data, and does

not apply to DL3DV and RealEstate.

More Training Details. For all transformer layers in RayZer,

we apply QK-Norm [4] to stabilize the training. We use a la-

tent dimension of 768 for RayZer and all baselines methods.

RayZer and LVSM both use a latent set scene representa-

tion with 3072 tokens. We use mixed precision training [8]

with BF16, further accelerated by FlashAttention-V2 [3] of

xFormers [7] and gradient checkpointing [2].

We train RayZer and all baselines with the same training

protocol. We use 32 A100 GPUs with a total batch size

of 256. During training, we warm up with 3000 iterations,

using a linearly increased learning rate from 0 to 4e− 4. We

apply a cosine learning rate decay, while the final learning

rate is 1.5e − 4. We train all baselines with 50, 000 steps.

We clip the gradient with norm larger than 1.0. We follow

all other hyper-parameters of LVSM.

More Model Details. Following LVSM, we do not use bias

terms in linear and normalization layers. We also apply the

depth-wise initialization for transformer layers.

Ablation details. In Table 7 (2), we use a two-layer MLP to

encode the camera pose and intrinsics back to a latent pose

representation in R
d. In detail, for the predicted pose of each

image (in 6D representation [11]), and the camera intrinsics

(as the 4-dimensional focal length and principal points of

x-axis and y-axis), we first concatenate them, getting a 10-

dimensional pose representation. Then, we use the MLP

to map it as a high-dimensional pose feature token. To

predict the target views, we use a set of learnable patch-

aligned spatial tokens shared across all target images as the

initialization. Thus, the rendering decoder takes in the spatial

tokens, the scene tokens, and the pose token. After using

transformer for updating, we use the updated spatial tokens

to regress the pixel values.

B. RayZer Training with Continuous Inputs

RayZer takes in multi-view image inputs, which can be sam-

pled from either continuous video frames or an unordered

image set. In this section, we present two design choices to

improve self-supervised learning on video frames input.

Canonical View Selection. Prior works [5, 9] usually select

the first image in an image sequence as the canonical view.

In contrast, we select the frame at the middle time-step as

canonical. In this context, the pose prediction MLPpose

initialized with a zero mean for its weights will have a small

pose data variance. Otherwise, when using the first frame

as canonical, the variance can be much larger. Note that

this difference in pose variance can be easily handled with

ground-truth camera supervision, thus, prior works choose

the first image as the canonical view. However, this is more

important for unsupervised methods, like RayZer.

Curriculum. We gradually increase the training difficulty

by sampling video frames with an increasing distance range.

With proper initialization of the model for camera pose esti-

mation, it first learns from images with small camera base-
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Even Sample Random Sample

PSNR SSIM LPIPS PSNR SSIM LPIPS

(0) RayZer 24.36 0.757 0.209 23.72 0.733 0.222

(1) first frame as canonical 23.86 0.736 0.224 23.78 0.737 0.225

(2) no curriculum 23.87 0.734 0.226 23.87 0.735 0.226

Table 1. Ablation study of RayZer techniques to train on con-

tinuous video frames. (1) is a variant choosing the first image in

the sequence as the canonical view, rather than choosing the middle

frame. (2) does not use the frame sampling curriculum.
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Figure 1. Visualization of RayZer failure cases on DL3DV.

lines, benefiting the training with larger camera baselines,

that follows. In detail, we use a curriculum with a frame

sampling range of 48-64, 96-128, and 24-32 at the beginning

of training for DL3DV, RealEstate, and Objaverse, respec-

tively. The frame sampling range is linearly increased to

64-96, 128-192, and 48-65 at the end of training for DL3DV,

RealEstate, and Objaverse, respectively. The final frame

sampling range is also used for the evaluation. The sampling

ranges are set based on the difficulty (camera baseline) of

each dataset, following prior works [1, 6, 9, 10, 12].

Experiments. We include ablations in Table 1, where re-

moving any of the previously discussed techniques leads to a

degraded performance. This demonstrates the effectiveness

of our designs of selecting canonical view and using frame

sampling curriculum during training.

C. More Results

In this section, we present more results for discussing

RayZer’s failure cases and show more visualizations.

Failure Case Pattern. We observe that RayZer can fail when

dealing with fine-grained geometry, complicated materials,

and occlusions. We present the visualization in Fig. 1. In

detail, RayZer fails to handle complicated plant geometry

(first row). This failure is not specific to RayZer – GS-LRM

and LVSM also can not handle it. In the second and last

row, RayZer fails to handle multiple stacked glasses and is

not perfect on the specular reflection of the silver teapots.

GS-LRM and LVSM also demonstrate imperfect results. In

the third and fourth rows, all methods, including RayZer, fail

to handle occlusions, where the side view of the exhibition

stand is not observed in input views (third row), and the

chairs in the fourth row have self-occlusion.

More Comparisons. We present more visualization results,

comparing with GS-LRM and LVSM in Fig. 2. RayZer

generally performs on par, while being a self-supervised

method that does not require any camera pose annotations.

More Visualization. We present more visualization results

comparing with ground-truth novel views in Fig. 3-5.

D. More Discussion

Why does RayZer demonstrates strong novel view synthesis

quality while the fine-tuned pose estimation is not perfect

(Table 7 in the main manuscript)? We conjecture RayZer’s

pose space jointly learns the actual pose information and

3D-aware video frame interpolation at the same time. On

datasets with small camera baselines (RealEstate), which

is easy to learn, RayZer mainly focuses on learning actual

pose estimation. This is supported by the accurate pose

estimation performance on RealEstate. On datasets that

have large camera baselines (DL3DV and Objaverse), where

pose estimation is harder to learn with only self-supervision,

RayZer also leverages video interpolation cues together with

pose estimation to perform novel view synthesis.

Thus, the method to further enhance disentanglement of

interpolation and pose estimation would be an important

future direction. In RayZer, using unordered image sets for

training and using continuous video frames for training can

be two extreme cases in the spectrum for learning this disen-

tanglement. In detail, learning on continuous video frames

with using image index positional embeddings strongly en-

courages the camera pose local smoothness to enhance train-

ing performance; while training on unordered image sets

fully discards this prior. Finding a balance between the two

and designing a better method to encourage the camera pose

local smoothness is a promising avenue to solve the structure-

and-motion problem with learning SE(3) camera poses in

the real-world space.
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Figure 2. Visual compression of RayZer and “oracle” methods

on DL3DV.
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Figure 3. Visual compression with ground-truth novel views on DL3DV. The first row of each sample is the target novel views, and the

second row are images rendered by RayZer.
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Figure 4. Visual compression with ground-truth novel views on RealEstate. The first row of each sample is the target novel views, and the

second row are images rendered by RayZer.



GT

Target

Views

RayZer

Predi-

ctions

GT

Target

Views

RayZer

Predi-

ctions

GT

Target

Views

RayZer

Predi-

ctions

GT

Target

Views

RayZer

Predi-

ctions

GT

Target

Views

RayZer

Predi-

ctions

GT

Target

Views

RayZer

Predi-

ctions

Figure 5. Visual compression with ground-truth novel views on Objaverse. The first row of each sample is the target novel views, and the

second row are images rendered by RayZer.


