
Supplementary of
“Real3D: Towards Scaling Large Reconstruction Models with Real Images”

Hanwen Jiang Qixing Huang Georgios Pavlakos
The University of Texas at Austin

Project & Code: https://hwjiang1510.github.io/Real3D/

1. More LRM Details

Problem of training LRMs on multi-view real data. Train-
ing LRMs requires two properties for the training data: 1)
the camera center aligns with the object center, otherwise
it leads to pose ambiguity; 2) the camera has a constant
distance to the object center, otherwise it leads to scale ambi-
guity. The two requirements are easy to handle on synthetic
data.

However, real-world multi-view images do not satisfy
the assumptions. To deal with the first assumption, LRM
uses the sparse point cloud of COLMAP reconstruction to
re-center and re-scale the world coordinate frame. However,
this solution limits the accuracy and scalability of using real-
world data, as COLMAP reconstruction can be inaccurate,
and it is not trivial to capture detailed multi-view videos of
objects and run COLMAP on each one of them. To deal with
the second assumption, LRM is modified to condition on the
input view camera pose ϕI and intrinsics KI , formulated
as T = LRM(I,ΦI ,KI). Note that both ϕI and KI vary
across training samples, where ϕI has a non-constant trans-
lation vector, and KI has non-centered principle points due
to object-region cropping. These varying camera settings
across different training samples lead to limited improve-
ments of using real-world multi-view data (MVImgNet) for
training. Please see Table 9 in main paper.

2. More Training Details
Training. As we discussed, TripoSR predicts reconstruction
with random scales on different inputs. The reason is that
TripoSR is not conditioned on the input view camera pose
and intrinsics. Thus, the model is encouraged to guess the
object scale [5]. Moreover, TripoSR is trained on a set of
Objaverse data rendered using different rendering settings.
Thus, TripoSR usually overfits the training scales and can not
predict the scales accurately for images rendered in different
settings or in-the-wild real images. The scale of the object in
the output triplane can vary and may not be consistent with
regard to the scale variation in the input images. Specifically,
the inaccurate scales are manifested as the misalignment

between the rendered and original input view when using
a canonical camera pose with a constant translation vector.
And the misalignment of the scale is random.

We fine-tune TripoSR to solve the problem, using the Ob-
javerse images rendered with a constant camera translation
scale. We use a learning rate 4e− 5 with AdamW optimizer
and warmup iteration 3, 000. It is fine-tuned with 40, 000
iterations with an equivalent batch size of 80.

For all training, we β1, β2, ϵ of AdamW as 0.9, 0.96,
and 1e − 6. We use a weight decay of 0.05 and perform
gradient clipping with the max gradient scale of 1.0. During
training, we render images with a resolution of 128× 128.
For each pixel, we sample 128 points along its ray. For
the images in the real dataset, we crop the instance with a
random expanding ratio in [1.45, 1.7] of the longer side of
the instance bounding box. Our inputs have a resolution
of H = W = 512 and the triplane has a resolution of
h = w = 64. As TripoSR requires inputs with a gray
background, we render a density mask σ̂Φ together with
the color image ÎRΦ when calculating the cycle-consistency
pixel-level loss. We apply the rendered density mask to make
the background gray. We use 8 GPUs with 48GB memory.
Training lasts for 4 days.

Evaluation. As our model inherits the model architecture
of TripoSR, it can not handle real data input with non-
centered principle points. To evaluate the models, we select
a subset of MVImgNet and CO3D of 100 instances and use
the image where the center of its instance mask is closest
to the image center as input. We mask the background
and perform center cropping with an expanding ratio of
1.6 times the mask bounding box size. We do not have
any requirements for the target novel views. Moreover,
we use the provided COLMAP point cloud to normalize
the camera poses. We normalize the input pose as the
canonical pose ϕ. The poses of other views are normalized
accordingly with similarity transformations, following
LRM [4]. We evaluate CO3D and MVImgNet with 5 views
for each instance and evaluate OmniObject3D with 10
views for each instance. To evaluate the self-consistency,
we use intermediate camera pose with the azimuth of

1

https://hwjiang1510.github.io/Real3D/

𝑝

𝑝𝑖𝑛

𝑝𝑜𝑢𝑡

Estimated Depth 𝐷

Raw Image

Instance Masks

DECOLA

Depth
Anything

Outer Normal
Inner Normal

If 𝐷 𝑝𝑖𝑛 > 𝐷 𝑝𝑜𝑢𝑡 ,
occluded

For each instance

Figure 1. The occlusion detection pipeline for data curation.

[0, 30, 60,−30,−60, 30, 60,−30,−60, 30, 60,−30,−60]
and elevation of [0, 0, 0, 0, 0, 30, 30, 30, 30, 60, 60, 60, 60].

3. Data Curation Details

We filter the instances with three criteria. First, we filter out
truncated and small instances. This is achieved with simple
heuristics by thresholding the instance scale and its distance
to the image boundary. We use an instance scale threshold
of 100 pixels and a boundary distance threshold of 10 pixels.

Second, we filter instances by their category. We em-
pirically observe the LRM can not effectively reconstruct
instances belonging to specific categories, e.g., bus. The
reason is the large scale-variation between the front view
and the side view. For example, when seeing the bus from a
front view, the model can not reconstruct its side view with
the correct scale, as the latent triplane representation has a
cubic physical size. We observe that performing self-training
on these instances harms the performance instead. We note
this is a limitation of the Triplane-based LRM base model
rather than our self-training framework.

Third, we filter the occluded instances. As shown in
Fig. 1, we leverage the synergy between instance segmenta-
tion and single-view depth estimation for occlusion detection.
We first detect the mask boundaries and then calculate the
boundary parts that are contacting other instances. We use
an erosion operation with kernel size 9 for boundary detec-
tion. The boundary is calculated as the difference between
the eroded and the original instance mask. To detect bound-
aries that contact other instances, we use another erosion
operation with kernel size 15. We erode the boundary of the
current instance, then the contacting boundary is defined as
its overlap region with the boundary of any other instances.
We then determine whether an object is occluded based on
whether it “owns" the boundary. For each instance, we sam-
ple N = 20 points (with replacement) on the boundary that
contacts other instances. We then calculate the normal di-
rection of the boundary at the sampled points. In detail, we
use the Sobel operator to calculate the boundary tangent
and normal direction. We note that we ignore the points
whose 8 neighbors are all positive, during the point sampling
process. We can easily know the outer and inner-mask nor-
mal directions by querying the instance mask. If the query
results are both negative or positive, potentially due to the

non-convex local boundary, we reject the object. Then we
sample one point along each normal direction, where the
sampling distance is 0.05 ∗ s, where s = (bx + by)/2 and
bx, by are the size of the mask bounding box in x and y-axis.
We then query the estimated depth at the two sampled points,
denoted as Dinner and Douter. If Douter/Dinner is smaller
than 0.95, we consider the point occluded. If half of the
sampled points on the boundary are considered occluded,
they vote the object as occluded.

We use DECOLA [2] and Depth Anything [6] for instance
segmentation and depth estimation. We use a confidence
threshold of 0.3 to filter the detection results of DECOLA.
We use this low threshold for detecting all instances in the
image, as any non-detected object affects the occlusion de-
tection results. However, we empirically observe that a
too-low confidence threshold, e.g., 0.1, will lead to over-
segmentation and false positive detection results.

4. More Results and Ablations

Input

Reconstruction

(Azimuth 0° → 360°, Elevation=0)

Input

w. Naïve

Semantic

Loss

End-to-end

Consistency

Loss

Full

Model

w. Naïve

Semantic

Loss

End-to-end

Consistency

Loss

Full

Model

w. Naïve

Semantic

Loss

End-to-end

Consistency

Loss

Full

Model

Input

Input

w. Naïve

Semantic

Loss

End-to-end

Consistency

Loss

Full

Model

Figure 2. Visualization of semantic-guidance loss ablation experi-
ments on MVImgNet.

Performance Gain over using Multi-View Data. In
Table 9 of main paper for ablating the effectiveness of
using multi-view real-world MVImgNet data, we choose
OpenLRM [3] as it is the best open-source model that is
trained with MVImgNet data. We note that training with
multi-view real-world MVImgNet data requires pose and

Eval. on GT Novel Views
Novel View Synthesis Quality

MVImgNet CO3D OmniObject3D
Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

LRM [3] 19.75 0.864 0.112 18.31 0.849 0.126 18.20 0.831 0.144
LRM* [3] 20.16 0.867 0.105 18.82 0.852 0.119 18.53 0.837 0.138
∆LRM* / ∆multi-view 0.410 0.003 0.007 0.510 0.003 0.007 0.330 0.006 0.006

TripoSR† [5] 17.37 0.830 0.170 15.94 0.812 0.181 17.28 0.810 0.180
TripoSR [5] 19.81 0.864 0.116 18.44 0.848 0.127 19.43 0.847 0.128
Real3D§ (ours) 20.33 0.869 0.111 19.03 0.854 0.119 19.98 0.854 0.121
∆ours§ 0.520 0.005 0.005 0.590 0.006 0.008 0.550 0.003 0.007

Table 1. Evaluation results on the real-world in-domain MVImageNet dataset. We note that LRM* is trained on both synthetic Objaverse
and multi-view data of real-world MVImgeNet as an oracle comparison (results in gray). TripoSR† is the original TripoSR without our
fine-tuning. Real3D§ is trained on single-view images of MVImgNet without access to the multi-view information. We use 1 image for each
object instance; in contrast, LRM* uses 30 multi-view images (in average) for each object. We highlight the best results. We also include
the gain (∆) by using real data. ∆LRM* is same as ∆multi-view in Table 9 of main paper.

Figure 3. Qualitative comparison of the model without cycle-
consistency loss (first row of each example) and with cycle-
consistency loss (second row of each example).

intrinsics conditioning as we discussed in Sec. 3 of the main
paper. Our base model TripoSR does not support this feature,
as it does not have the image pose and intrinsics conditioning
branch.

Effectiveness of Self-Training. To further evaluate the ef-
fectiveness of self-training, we compare LRM∗ and a Real3D
version trained with MVImgNet single-view images. In this
comparison, LRM∗ and Real3D have a similar real-world
training data distribution. We note that LRM∗ is trained with
multi-view data, where each instance of MVImgNet contains
about 30 views. In contrast, Real3D only uses one image
of each instance. Thus, Real3D uses the same number of

Input LGM CRM InstantMesh OpenLRM TripoSR Ours GT

Figure 4. Visual comparison with prior works and ground-truth
novel views.

shape instances for training as LRM∗, but the number of
training images is 30× less. As shown in Table 1, Real3D
outperforms LRM∗ and achieves larger improvements in
most of the results, demonstrating the effectiveness of our
self-training strategy.

MVImgNet CO3D WildImgs OmniObject3D
SF3D 19.58 18.34 18.68 19.84
SF3D + ours 20.43 19.10 19.31 20.36

Table 2. PSNR of SF3D and ours. For rendering, we decrease
points sampled on each ray from 128 to 64 to fit SF3D into our
GPUs in all experiments.

MVImgNet CO3D WildImgs OmniObject3D
No real data 19.81 18.44 18.18 19.43

Controlled real data 20.27 18.96 18.74 19.98
Controlled + in-the-wild real data 20.53 19.18 19.00 20.17

Table 3. PSNR results of self-training with only controlled real data
and both controlled and in-the-wild real data.

Original TripoSR Performance. We also report the
performance of original TripoSR (denoted as TripoSR†) in
Table 1. Due to its random scale prediction, we observe low
evaluation metrics for TripoSR†. We use a grid search to
find the best evaluation metrics by using different camera-to-
world distances.

Visualization of Ablations. We visualize the reconstruc-
tion of ablated models in Fig. 2 and Fig. 3. Using naive
consistency loss makes the model copy the front of the ob-
ject to the back of the reconstruction. Using an end-to-end
cycle-consistency loss makes the reconstructions deformed
in a wrong manner. Our full model can reconstruct the
geometry correctly, especially the concave local geometry.
Using our cycle consistency loss improves the texture and
the geometry of the reconstruction, by avoiding texture leaks,
unnatural and deformed shapes in general.

Generalization to other base models. Other than Tri-
poSR, we test with another base model, SF3D [1]. We show
results in Table 2, where the improvements demonstrates
the generalization of our self-training method to other base
models. Note that to fit SF3D to our 40GB GPUs, we use
a smaller number of points sampled on each ray, reducing
it from 128 to 64. This generally degrades the evaluation
results. However, this does not affect our observation that
our self-training method improves the base model.

Detailed analysis of real data. We curate 1) 200K im-
ages from well-controlled data, e.g. ImageNet; and 2) 100K
images from in-the-wild style Internet data, e.g. OpenImages.
Tab. 3 shows that both subsets contribute to better perfor-
mance. We uphold ethics by avoiding sensitive resources
like LION-5B and excluding human-related categories.

5. More Visualizations
We include additional visualizations in Fig. 4. We observe
that methods with generative priors usually suffer from un-
realistic reconstruction, where the synthesized novel views
of real objects are incorrect. This leads to the compounding
error of the two-stage generation-then-reconstruction frame-
work. Moreover, we also observe these methods usually
suffer from not photo-realistic reconstruction at the back
views and unaligned reconstruction content with the input

Figure 5. Visualization of meshes predicted by InstantMesh (first
row of each example), TripoSR (second row of each example) and
our method (last row of each example).

Figure 6. Representative failure cases of Real3D reconstructions.

images. In some other cases, they can produce high-quality
reconstruction, while the reconstruction content, object scale,
and object pose are different from the input image.

6. Mesh Visualization
We include the mesh visualization in Fig. 5. We observe
that the other two baselines perform worse than Real3D,
particularly in cases with non-common object shapes, while
InstantMesh specifically struggles to faithfully reconstruct
thin structures.

7. Failure Cases
We include some failure cases of Real3D in Fig. 6. We
observed that the reconstruction quality of Real3D can be
compromised in cases with very unusual viewpoints, e.g.,
upside-down views, as well as in cases with low image qual-
ity, e.g., blurry images with potentially truncated content.

References
[1] Mark Boss, Zixuan Huang, Aaryaman Vasishta, and Varun

Jampani. Sf3d: Stable fast 3d mesh reconstruction with uv-
unwrapping and illumination disentanglement. arXiv preprint
arXiv:2408.00653, 2024.

[2] Jang Hyun Cho and Philipp Krähenbühl. Language-
conditioned detection transformer. arXiv preprint
arXiv:2311.17902, 2023.

[3] Zexin He and Tengfei Wang. Openlrm: Open-source large re-
construction models. https://github.com/3DTopia/
OpenLRM, 2023.

https://github.com/3DTopia/OpenLRM
https://github.com/3DTopia/OpenLRM

[4] Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou,
Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, and Hao
Tan. Lrm: Large reconstruction model for single image to 3d.
arXiv preprint arXiv:2311.04400, 2023.

[5] Dmitry Tochilkin, David Pankratz, Zexiang Liu, Zixuan Huang,
Adam Letts, Yangguang Li, Ding Liang, Christian Laforte,
Varun Jampani, and Yan-Pei Cao. Triposr: Fast 3d ob-
ject reconstruction from a single image. arXiv preprint
arXiv:2403.02151, 2024.

[6] Lihe Yang, Bingyi Kang, Zilong Huang, Xiaogang Xu, Ji-
ashi Feng, and Hengshuang Zhao. Depth anything: Unleash-
ing the power of large-scale unlabeled data. arXiv preprint
arXiv:2401.10891, 2024.

