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1. Detailed Review of Related Work
1.1. Visual Prompting
Visual Prompt Tuning (VPT) [16] pioneered the adaptation
of prompt learning to computer vision by introducing learn-
able prompt tokens into vision transformers. The core prin-
ciple involves prepending learnable parameters to the in-
put sequence while keeping the backbone frozen, achieving
performance comparable to full fine-tuning with only 0.1%
of trainable parameters. This parameter-efficient approach
was inspired by prompt learning in Natural Language Pro-
cessing (NLP) [3, 23], where it evolved from manual text
prompts to learnable continuous vectors [21]. The suc-
cess of prompt learning has also catalyzed various devel-
opments in vision-language models, such as CLIP [30] and
CoOp [60].

Efficiency and Adaptability: DePT [10] optimizes
source-initialized prompts for test-time adaptation, while
E2VPT [4] introduces token-wise and segment-wise prompt
pruning to reduce parameter overhead. PViT [55] develops
task-specific prompts for multi-task scenarios, and LPT [8]
addresses long-tailed distribution challenges by combining
shared and group-specific prompts.

Continual Learning Applications: Learning to Prompt
(L2P) [49] made a significant breakthrough by introduc-
ing a pool mechanism to maintain shared prompts across
tasks. This approach was further enhanced by Dual-
Prompt [48], which introduced complementary general and
expert prompts to capture both task-invariant and task-
specific knowledge. These methods have demonstrated
superior performance compared to traditional parameter-
efficient approaches such as Adapter [29] and LoRA [13].
Recent advances include CODA-Prompt [35], which im-
proves prompt-based continual learning through cross-task
knowledge distillation, and S-Prompts [47], which explores
similar strategies in domain-incremental learning scenarios.
The latest HideP [44] introduces a hierarchical decomposi-
tion approach to optimize different components of continual
learning separately.

Instance-Level Adaptation: Recent work has focused
on addressing the challenge of capturing instance-specific
features from different perspectives. InsVP [24] introduces
a dual-level instance visual prompting scheme, which lever-
ages both image-level and feature-level instance-specific in-
formation to enhance model recognition capability. Simi-
larly, DAM-VP [14] proposes a cluster-level visual prompt-
ing method that learns distinct prompt sets for different
sample clusters.

Despite these advances, several challenges remain in

prompt-based visual learning. Current pool-based prompt-
ing methods still struggle with efficient prompt selection
and utilization, especially when spatial information plays a
vital role in distinguishing fine-grained features. The static
nature of prompt pool structures may limit the model’s abil-
ity to fully leverage task relationships and adapt to novel
scenarios. Moreover, the complex interaction between
prompts and vision transformer layers requires deeper in-
vestigation to optimize knowledge transfer and mitigate
catastrophic forgetting. While recent advances have ad-
dressed some of these limitations through instance-level
adaptation and spatial information utilization, there remains
significant room for improvement in prompt pool design
and management, particularly in effectively combining lo-
cal and global spatial information while maintaining model
efficiency.

1.2. FSCIL
FSCIL represents a sophisticated integration of Few-Shot
Learning (FSL) and Class-Incremental Learning (CIL) [2].
This paradigm inherits the fundamental challenge of FSL
in learning from limited samples, while simultaneously ad-
dressing the CIL requirement of maintaining model perfor-
mance on previously learned tasks as new classes are incre-
mentally introduced.

Structure-based and Dynamic Network Methods.
Few-Shot Class-Incremental Learning (FSCIL) was pi-
oneered by Tao et al. [40], who introduced a neural
gas network to preserve topological relationships between
classes. This seminal work laid the foundation for sub-
sequent research, notably CEC [54], which advanced the
field by introducing a class-specific classifier architecture
integrated with a graph-based model for efficient inter-
classifier information propagation and adaptation. Recent
developments in this domain have witnessed a significant
shift towards dynamic network architectures, encompass-
ing several key directions: dynamic backbone structures
(DSN) [51], structure fusion mechanisms (FeSSSS) [1],
adaptive sub-networks (SoftNet) [17], and ensemble-based
frameworks (LEC-Net) [50]. State-of-the-art methods such
as EM [62] have demonstrated the remarkable efficacy of
dynamic architectural adaptation in addressing the funda-
mental challenges of FSCIL.

Knowledge Distillation and Replay-Based Methods.
A significant body of research in FSCIL focuses on knowl-
edge preservation through replay buffers or feature gen-
eration mechanisms. LCwoF [20] and SKD [32] pio-
neered this direction by incorporating feature pyramid ar-
chitectures to enhance knowledge preservation capabilities.



Dataset Domain Images Classes Base Base Setup Novel Novel Setup Train/Test Source
CUB-200 Fine-grained Birds 11,788 200 100 100w-30s (3K) 100 (10/ses) 10×(10w-5s) 30/50 Caltech
iNF200 Fungi Species 10,000 200 100 100w-50s (5K) 100 (10/ses) 10×(10w-5s) 50/50 iNat
FGVCAircraft Aircraft Variants 10,000 100 50 50w-30s (1.5K) 50 (5/ses) 10×(5w-5s) 30/50 FGVC

Table 1. Detailed dataset configurations for fine-grained visual recognition. Base indicates the number of categories used in initial training
(training samples in parentheses), while Novel shows how remaining categories are distributed across 10 incremental sessions. For base
training, Train/Test denotes samples per class for training/testing respectively. In novel sessions, we consistently use 5 samples for training
and the remaining for testing. The setup format (N-way-K-shot) specifies N categories with K samples per category for both base and novel
phases.

Building upon this foundation, [34] employed Generative
Adversarial Networks to synthesize features, effectively ad-
dressing the data scarcity challenge inherent in few-shot
scenarios. Recent advances have further refined these ap-
proaches: CABD [56] introduced class-aware bilateral dis-
tillation, facilitating knowledge transfer between base and
novel classes through a sophisticated distillation frame-
work, while UaD-CE [6] enhanced performance through an
innovative combination of reference model distillation and
uncertainty-aware adaptive mechanisms. While these meth-
ods demonstrate promising results, they typically necessi-
tate additional computational resources for storing histori-
cal samples or maintaining teacher models.

Feature Space-based Methods. Early explorations in
feature space optimization for FSCIL include LIMIT [58]
and WaRP [18]. iCaRL [33] introduced a practical strat-
egy for simultaneously learning classifiers and feature rep-
resentations in the class-incremental setting. FOSTER [43]
advanced this direction through a two-step paradigm of
feature boosting and compression, effectively addressing
the performance decline in new classes. Building upon
these foundations, FACT [57] introduced Forward Com-
patible Training, an innovative approach that reserves rep-
resentation space through strategic prototype placement.
TEEN [45] proposed a training-free prototype calibration
strategy to address the misclassification of new classes into
similar base classes. RDI [59] further investigated the base-
novel confusion problem by decoupling label-irrelevant re-
dundancies in both feature and pixel spaces. ALICE [28]
advanced this direction by emphasizing both feature space
compactness and diversity, while SAVC [37] incorporated
semantic knowledge through virtual class generation.

Meta Learning-based and Optimization-based Meth-
ods. Meta learning and optimization techniques have
emerged as powerful approaches in FSCIL, incorporating
various regularization strategies and adaptive loss functions.
SPPR [61] enhances feature representation through an in-
novative prototype refinement strategy, while CLOM [63]
introduces a novel cosine loss with negative margin to
promote shareable feature learning. C-FSCIL [11] pro-
poses quasi-orthogonal prototype alignment, and Comp-
FSCIL [64] introduces a cognitive-inspired approach uti-
lizing primitive composition and reuse modules based on

set similarities. NC-FSCIL [52] employs dot-regression
loss to optimize feature-prototype alignment. Earlier con-
tributions include MetaFSCIL [5] and FSLL [26], which
established fundamental meta-learning frameworks for in-
cremental few-shot scenarios.

Pretrained Model-based Methods. Recent advances in
FSCIL have increasingly leveraged the remarkable capabil-
ities of pre-trained models. Several pioneering works [9,
15, 53] have explored multi-modal approaches by incor-
porating CLIP [31], establishing novel paradigms for fea-
ture alignment between visual and textual modalities. In
parallel, significant progress has been made in utilizing
Vision Transformers for FSCIL tasks. ASP [22] demon-
strates the effectiveness of this approach by employing a
fixed pre-trained backbone while encoding task-invariant
knowledge in learnable prompts, effectively addressing the
stability-plasticity dilemma. Yourself [39] further advances
this direction through an innovative feature rectification
module, while Approximation [46] establishes compre-
hensive guidelines for mitigating transfer and consistency
risks. A significant breakthrough came with PriViLege [27],
which effectively addresses catastrophic forgetting through
its novel PKT module and semantic knowledge distillation
mechanism. Our work builds upon these recent advances,
further exploring the potential of pre-trained models in in-
cremental learning scenarios.

2. Empirical Setup

2.1. Experimental Datasets
We first discuss our dataset selection rationale, focusing
on distribution overlap concerns with pre-trained weights.
Then we present our three benchmark datasets and their par-
titioning protocols, followed by evaluation metrics.

2.1.1. Dataset Selection Rationale
CIFAR-100 [19], CUB-200 [42], and miniImageNet [41]
have served as standard benchmark datasets in the field.
However, we identify a critical limitation in their evaluation
capacity for our context. Given that our approach leverages
ImageNet pre-trained weights—a common practice shared
by [27], [46], [39], [22], and [38]—we find that CIFAR-100
and CUB-200 share substantial distribution similarities with



Figure 1. Samples of CUB-200.

ImageNet. This overlap raises concerns about potential data
leakage, particularly when applying pre-trained weights to
miniImageNet (a subset of ImageNet), which could lead to
artificially enhanced performance metrics.

To ensure a more rigorous evaluation of our proposed
method, we extend our experiments to two challenging fine-
grained datasets: FGVCAircraft [25] and a carefully se-
lected subset from iNaturalist (Fungi) [12]. Specifically,
we work with the first 200 fungal species classes from iNat-
uralist, referred to as iNF200. These datasets offer distinct
visual distributions from ImageNet, enabling a more com-
prehensive assessment of our method’s generalization abil-
ities. Table 1 provides the detailed configurations of our
experimental datasets, including class distribution, train-
ing/testing splits, and the session setup for both base and
novel classes.

2.1.2. Benchmark Datasets.
CUB-200 (Caltech-UCSD Birds) is a fine-grained visual
classification dataset comprising 200 bird species with a to-
tal of 11,788 images, with sample images shown in Fig-
ure 1. In our incremental learning setup, we designate the
first 100 species as base classes. The remaining classes
are evenly distributed across 10 incremental sessions, with
each session introducing 10 novel species. Following the
few-shot learning paradigm, we utilize 5 samples per class
during training, establishing a 10-way 5-shot incremental
learning scenario.

FGVCAircraft presents a challenging collection of
10,000 aircraft images spanning 100 distinct aircraft vari-
ants, with representative samples shown in Figure 2. We
structure our experiments by allocating 50 variants as base
classes, with the remaining 50 variants distributed across 10
incremental learning sessions. Each session incorporates 5
new aircraft variants, and similar to our other experiments,
we maintain a 5-shot learning protocol, resulting in a 5-way

Figure 2. Samples of FGVCAircraft.

Figure 3. Samples of iNF200.

5-shot incremental learning framework.
iNF200 (iNaturalist Fungi-200) represents a carefully

curated subset of the iNaturalist dataset’s fungi category,
with diverse examples illustrated in Figure 3. From the ex-
tensive collection of fungal species available in iNaturalist,
we select the first 200 classes, each containing 50 images,
yielding a total of 10,000 samples. Our experimental pro-
tocol assigns the initial 100 species to the base training set.
The subsequent 100 species are systematically distributed
across 10 incremental sessions, with each session introduc-
ing 10 new species. Maintaining consistency with our ex-
perimental design, we employ 5 examples per class, estab-
lishing a 10-way 5-shot incremental learning configuration.

2.1.3. Dataset Partitioning Protocol
In our experimental design, we adhere to established dataset
partitioning protocols to maintain consistency and repro-
ducibility. The CUB-200 dataset follows the division



scheme outlined in CEC [54], while FGVCAircraft and
iNF200 are organized according to the protocol described
in [7]. This careful consideration in dataset selection and
organization provides a robust evaluation framework that
effectively addresses the limitations of ImageNet-aligned
datasets.

2.1.4. Evaluation Protocol
We employ three complementary metrics to comprehen-
sively evaluate our model’s performance. For each incre-
mental session t, we compute the classification accuracy
At. The overall model performance is assessed through the
average accuracy across all sessions, computed as Avg =
1
T

∑T
i=1 Ai.

2.2. Model Implementation
2.2.1. Model Architecture and Training Strategy
Our framework builds upon the Vision Transformer (ViT)
architecture, leveraging a model pre-trained on ImageNet-
21K as our backbone network. We adopt and extend
the Visual Prompt Tuning (VPT) paradigm [16], specif-
ically following the VPT-deep configuration, which has
demonstrated superior performance in visual transfer learn-
ing tasks. In this setup, we strategically insert learnable
prompt tokens between consecutive transformer blocks, en-
abling fine-grained feature adaptation while maintaining the
pre-trained model’s robust representational capacity. The
prompt parameters are initialized from a normal distribu-
tion, following standard practices in transformer-based ar-
chitectures.

Following the established practice in few-shot class-
incremental learning [22, 27, 38, 39, 46], we keep the pre-
trained ViT backbone frozen during the entire learning pro-
cess. This conventional strategy has proven effective in
preventing catastrophic forgetting and maintaining stable
feature representations. During training, we only optimize
the inserted visual prompts and the prototype-based classi-
fier [36], which aligns with the field’s standard approach
of selective parameter updating when adapting to novel
classes.

2.2.2. Implementation Details
The training process consists of two main phases. In the
base session, we train the model for 16 epochs with a learn-
ing rate of 0.02. This is followed by the novel session,
where we fine-tune for 5 epochs with a reduced learning
rate of 0.002. For the Local Spatial Pool, we maintain 30
learnable spatial prompts (CNN & Local Spatial Prompts),
each initialized with Kaiming initialization and employing
dropout (rate = 0.1) for robust feature extraction. These
prompts are trained with a learning rate of 0.001 during the
base session.

In the Global Spatial Pool, we design frequency-based
prompts organized in concentric regions. These prompts,

Integration Strategy Acc (%) ∆

Ours (Learnable αl and αg) 81.392 -

Architecture Variants
GSP after LSP 81.242 -0.150
GSP before LSP 81.175 -0.217
Linear layer fusion 81.260 -0.132

Weight Constraints
Fixed sum constraint (αl + αg = 1) 80.179 -1.213
Only LSP weight learnable 80.159 -1.233
Only GSP weight learnable 80.139 -1.253

Advanced Fusion Mechanisms
Neural network weights 80.152 -1.240
Gating mechanism (Sigmoid) 80.503 -0.889
Non-linear fusion (MLP) 80.682 -0.710

Table 2. Ablation study on different feature integration strate-
gies. Our proposed learnable weights achieve the best perfor-
mance (81.392%) compared to various alternative fusion mech-
anisms.

represented as trainable frequency masks, are optimized
throughout both sessions with learning rates of 0.1 and
0.005 for base and novel sessions, respectively. The mask
weights are initialized using a normal distribution to ensure
balanced initial frequency responses. For adaptive feature
integration between local and global spatial information, we
introduce two learnable parameters αl and αg , constrained
by αl + αg = 1, with both initially set to 0.5.

These fusion parameters are exclusively optimized dur-
ing the base session with a learning rate of 0.005, allowing
the model to learn optimal combinations of local and global
spatial features. To ensure stable convergence, we adopt a
CosineAnnealingLR schedule for all learning rate adjust-
ments. All experiments are conducted on a single GPU
setup.

3. Hyperparameter Experiments

3.1. Feature Integration Mechanism Study

We evaluate various feature integration strategies to validate
our design choice of using learnable weights αl and αg . As
shown in Table 2, our experiments explore three aspects of
the integration mechanism:

First, for architectural design, different choices for com-
bining LSP and GSP, including sequential integration and
linear fusion, show competitive but slightly inferior perfor-
mance (∼81.2%) compared to our parallel processing with
learnable weights. When examining weight constraints, ex-
periments with fixed sum or single learnable weight show
significant performance degradation (∼80.1-80.2%), val-
idating our choice of independent weight optimization.
Moreover, more sophisticated approaches like neural net-
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Figure 4. Impact of adaptive weighting mechanism: Analy-
sis of accuracy variations with different initial weight combi-
nations between Local (αl) and Global (αg) Spatial Prompting
branches. The model demonstrates robust performance across var-
ious weight settings, with optimal performance achieved near bal-
anced weights.

works, gating mechanisms, and MLPs show inferior per-
formance (80.15-80.68%), suggesting that complex fusion
strategies might introduce unnecessary optimization diffi-
culties.

We further investigate the impact of different weight ini-
tializations between LSP and GSP branches. As shown
in Fig. 4, our analysis reveals that the best performance
is achieved with balanced weight distributions (αl =
0.5–0.6), suggesting complementary contributions from
both local and global spatial information. The model
maintains robust performance (above 79.5%) across various
weight initializations, demonstrating strong stability. No-
tably, base classes show slight preference for higher local
weights (αl = 0.6), while novel classes achieve optimal
performance with balanced weights (αl = 0.5).

These comprehensive experiments yield several impor-
tant insights for our framework design:
• Simple learnable weights outperform complex fusion

mechanisms, emphasizing flexibility over complexity
• Independent optimization of LSP and GSP weights is cru-

cial for optimal performance
• The framework shows remarkable robustness to initializa-

tion while maintaining effective weight learning
• Balanced contribution from both spatial perspectives is

essential for overall performance

3.2. Detailed Analysis of LSP’s Effectiveness
We conduct extensive experiments to validate the effective-
ness of our proposed Local Spatial Prompting (LSP) mod-
ule across different architectures. Table 3 presents a detailed
breakdown of the performance metrics in the final session,
where we evaluate the model’s capability in both within-
space and cross-space classification scenarios.

Our experimental results reveal several significant find-
ings:

Universal Effectiveness. LSP demonstrates consistent per-

Model B→B+N N→B+N B→B N→N

VPT-Deep 81.18 73.14 84.71 73.92
VPT-Deep + LSP 83.41 73.41 84.77 75.77

VPT-Shallow 78.25 67.44 81.60 69.01
VPT-Shallow + LSP 82.12 70.27 83.28 72.46

Table 3. Detailed performance comparison of LSP across different
architectures in the final session. B→B+N denotes the accuracy of
base classes’ logits mapped to both base and novel classes space;
N→B+N represents novel classes’ logits mapped to the complete
class space; B→B indicates base classes’ accuracy within base
class space; N→N shows novel classes’ accuracy within novel
class space.

formance improvements across both deep and shallow ar-
chitectures. Notably, in the final session, both architectures
show enhanced performance across all evaluation metrics,
validating LSP’s architectural versatility.

Enhanced Cross-space Recognition. The B→B+N and
N→B+N metrics show significant improvements with LSP.
In VPT-Deep configuration, B→B+N accuracy improved
by 2.23% (81.18% → 83.41%) while N→B+N improved
by 0.27%. More substantial gains are observed in VPT-
Shallow, with B→B+N increasing by 3.87% and N→B+N
by 2.83%.

Robust Within-space Performance. The within-space
metrics (B→B and N→N) also show consistent improve-
ments. VPT-Deep + LSP achieves 84.77% B→B accuracy
and 75.77% N→N accuracy, while VPT-Shallow + LSP
shows more significant gains, particularly in N→N perfor-
mance with a 3.45% improvement.

Stability Across Sessions. As shown in Figure 5, models
equipped with LSP exhibit more stable performance trajec-
tories, particularly in later incremental stages. This stability
can be attributed to the spatial dimension exploitation that
effectively mitigates token-dimension saturation.

These empirical results strongly support our theoretical
framework:
• The comprehensive improvements in both cross-space

(B→B+N, N→B+N) and within-space (B→B, N→N)
metrics validate our hypothesis about token-dimension
saturation and the effectiveness of spatial-dimension
prompting as a solution.

• The enhanced stability in later sessions, coupled with im-
proved N→N performance, confirms that LSP success-
fully maintains discriminative feature learning capability
throughout the incremental learning process.

• The balanced improvements across all metrics suggest
that LSP effectively manages the stability-plasticity trade-
off inherent in FSCIL scenarios, particularly benefiting
the challenging cross-space recognition tasks.
This comprehensive analysis demonstrates that LSP not

only provides quantitative performance improvements but
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Figure 5. Performance comparison of different VPT variants
across sessions. The proposed LSP module consistently improves
the performance on both VPT-Deep and VPT-Shallow architec-
tures, demonstrating its effectiveness in addressing the token-
dimension saturation problem. Notably, the performance gain is
more significant in the VPT-Shallow setting (+3.348%) compared
to VPT-Deep (+1.243%), indicating LSP’s particular strength in
resource-constrained scenarios.

also addresses fundamental challenges in FSCIL through its
innovative spatial prompting mechanism, especially in sce-
narios requiring cross-space knowledge transfer.

3.3. Analysis of Soft Pool vs. Hard Pool Methods
Motivated by our visualization analysis that revealed token-
dimension saturation issues, we conducted experiments
comparing soft and hard pooling strategies. The soft pool-
ing approach attempts to address the saturation problem
by computing similarity-based weighted combinations of
prompts, potentially allowing the model to utilize infor-
mation from multiple prompts while avoiding direct token-
dimension conflicts.

As shown in Figure 6, our experimental results with care-
fully controlled prompt numbers (VPT length = 5, selected
pool size = 5) reveal several key findings:

Consistent Performance Gap: Even in this controlled
setting where token-dimension saturation is avoided, hard
pooling consistently outperforms soft pooling across all
configurations. The performance gap (1.30% improvement
in Pool-Deep, 1.09% in VPT-Pool-Deep) suggests that the
limitations of soft pooling are not merely due to token sat-
uration but rather inherent to the weighted combination ap-
proach itself.

VPT Integration Benefits: The integration of VPT
(length = 5) with pool-based methods shows improved per-
formance in both variants, with VPT-Pool-Deep achieving
the best results (75.70% for soft, 76.79% for hard). This
indicates that the initialized VPT prompts provide comple-
mentary features to the selected pool prompts when their
total number is kept below the saturation threshold.
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Figure 6. Performance comparison between soft and hard pooling
methods. All experiments are conducted with a fixed VPT length
of 5 and pool selection size of 5, which is determined based on our
previous analysis showing that token-dimension conflicts emerge
when the total number of prompts exceeds 10. This controlled
setting allows us to: (1) maintain both VPT and pool prompts be-
low the saturation threshold, ensuring both modules can poten-
tially contribute positively to the model’s performance, and (2)
specifically investigate whether soft pooling can effectively aggre-
gate information from all prompts in the pool without interference
from saturation effects.

Architecture Impact: Deep architectures demonstrate
superior performance across both pooling strategies, sug-
gesting better capability in utilizing the limited number of
prompts effectively.

These findings indicate that while soft pooling was de-
signed to potentially leverage information from all prompts
through weighted combinations, it fails to outperform the
direct selection mechanism of hard pooling even in scenar-
ios carefully designed to avoid token-dimension saturation.
This suggests that the challenge lies not in the quantity of
information that can be stored in the token dimension, but
rather in how effectively this information can be utilized.
The superior performance of hard pooling, even with the
same number of prompts, supports our motivation to ex-
plore alternative dimensions for prompt learning rather than
attempting to optimize information aggregation within the
token dimension.

3.4. Analysis of VPT and Pool Architecture Variants
As illustrated in Fig. 7, we first analyze the performance of
different Visual Prompt Tuning architectures on the CUB-
200 dataset. The results show that VPT-deep consistently
outperforms VPT-shallow across all sessions, maintaining
higher accuracy (77.2% vs. 72.8% at session 10) and ex-
hibiting better stability in knowledge retention. This per-
formance gap motivates us to extend the deep integration
strategy to the pool-based mechanism, leading to the devel-
opment of Pool-deep architecture for our subsequent inves-
tigation into prompt pool mechanisms for FSCIL tasks.

The superior performance of deep variants can be at-
tributed to their hierarchical feature modulation capability,
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Figure 7. Performance comparison of VPT and Pool methods on the CUB-200 dataset. Both approaches demonstrate superior performance
with deep configuration, showing consistent advantages in maintaining accuracy across incremental sessions. The deep variants (VPT-deep
and Pool-deep) consistently outperform their shallow counterparts, with VPT-deep achieving the best overall performance and exhibiting
more stable accuracy retention.

where prompts are inserted at multiple transformer layers
(L1, L2, ..., LN ). This design enables the model to capture
and modify features at various abstraction levels, from low-
level visual patterns to high-level semantic concepts. While
the original prompt pool method [49] only utilized shallow
integration at the input layer, we enhance it to Pool-deep
by extending prompt insertion across multiple layers. As
shown in Fig. 7, this improvement leads to consistently bet-
ter results compared to Pool-shallow (76.1% vs. 72.9% at
session 10). The performance curves also indicate that deep
architectures are more resilient to catastrophic forgetting,
maintaining more stable accuracy across incremental ses-
sions.

4. Extended Attention Pattern Analysis

We provide an extended visualization of attention patterns
in Figures 8 and 9 to further demonstrate the effective-
ness of our Local Spatial Prompting mechanism across a
diverse set of samples. These additional examples consis-
tently show how our approach reshapes the attention distri-
bution, shifting focus from background elements to seman-
tically meaningful regions of the target objects.

In these extended examples, we observe several key pat-
terns:

Consistent Focus Improvement: Across all samples,
the prompt attention maps (pmt) show more precise focus
on the target objects compared to the baseline class token
attention (cls).

Background Suppression: Our method effectively re-
duces attention to irrelevant background elements, which is
particularly evident in samples with complex or cluttered

backgrounds.
Feature Highlighting: The prompt attention maps con-

sistently highlight discriminative features of the objects,
suggesting that our Local Spatial Prompting mechanism
helps the model learn more robust and relevant feature rep-
resentations.

These additional visualizations further support our main
findings and demonstrate the generalizability of our ap-
proach across different scenarios and object types.

5. Limitations
While our proposed Local-Global Spatial Prompt Frame-
work advances Few-Shot Class Incremental Learning, it
faces notable limitations. The spatial prompts buffer in-
troduces additional memory overhead, challenging deploy-
ment in resource-constrained environments. Additionally,
the framework’s effectiveness heavily depends on adequate
pre-training, which may not be available in domains with
limited labeled data or rapidly changing environments.
These limitations suggest important directions for future re-
search to enhance the framework’s practical applicability.



orig cls pmt orig cls pmt
Figure 8. Extended visualization of attention patterns (Part 1). For each group of three images: orig shows the original input image, cls
displays the class token attention heat map before applying our method, and pmt shows the prompt attention heat map after applying our
Local Spatial Prompting mechanism.



orig cls pmt orig cls pmt
Figure 9. Extended visualization of attention patterns (Part 2). The visualization demonstrates consistent improvement in attention focus
across diverse samples, with the model learning to attend to discriminative features rather than background elements.
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