
A. Slider Window Demo

We provide additional comparison results of baseline meth-
ods with TimeFormer. We strongly recommend opening the
following website demos in folder website demos and us-
ing the “slider window” to see the improvements brought
by TimeFormer more clearly.
• Overview: link
• 4DGS+TimeFormer on HyperNeRF Dataset: link
• DeformGS+TimeFormer on HyperNeRF Dataset: link
• DeformGS+TimeFormer on NeRF-DS Dataset: link

B. More Details

Shared Weight, means a same deformation field is used
in both base branch (Canonical GS ! Deformation Field)
and TimeFormer branch (Canonical GS ! TimeFormer !
Deformation Field).
Novelty. The core is that we find a light Transformer that
implicitly models cross-temporal relationships, can out-
perform explicit methods just modeling adjacent times-

tamps as in previous methods. This implicit design actu-
ally addresses various hard cases in a very simple yet effi-
cient way. We also do deep exploration to make such im-
plicit modeling work, e.g., two-stream and shared weight,
addressing issues like quality and speed degradation.
Motion visualization. Following MotionGS [76] to visual-
ize Scene Flow t ! t+1, TimeFormer shows more consis-
tent 3D flow in Fig. 12.

Figure 12. 3D Scene Flow. DeformGS(left) +TimeFormer (right)

Long-term motion. TimeFormer can improve both synthe-
sis quality and motion modeling no matter for short-term or
long-term motion changes, as in Fig. 12 (this case has 400+
frames). Besides, TimeFormer can be easily extended to
longer videos by partitioning the long video into windows
and reconstructing them separately.
LPIPS. We add LPIPS results on N3DV Dataset as in
Tab. 6, showing the advantage of TimeFormer.

4DGS + TimeFormer STGS + TimeFormer
LPIPS# 0.141 0.135 0.136 0.131

Table 6. LPIPS on N3DV Dataset.

Improvement from background or dynamic parts.

TimeFormer is applied on all GS in a scene, so it can im-
prove the reconstruction quality of challenging cases both

in dynamic and static parts. Tab. 7 shows TimeFormer’s
higher quality on foreground and background.

SoTA/+TimeFormer Broom Lemon Hand
Foreground 19.56/20.89 27.09/30.92 26.78/29.91

Background 21.48/22.01 28.21/29.77 27.89/29.32

Table 7. DeformGS with TimeFormer on HyperNeRF Dataset.

Densification/pruning & TimeFormer’s effects. We keep
the same densification/pruning strategy as in SoTA meth-
ods. TimeFormer does have a considerable influence on
this process. In Fig. 8, TimeFormer accelerates the opti-
mization and promotes faster gradient descent. Since densi-
fication/pruning is performed based on gradient, a faster-
decreasing gradient means fewer GS points are needed,
leading to higher FPS (Tab. 2).
Why the same deformation fields can support queries of

two different Gaussian fields . TimeFormer is designed
to capture temporal correlations via a Transformer network,
while sharing the canonical Gaussians and subsequent de-
formation fields. The sharing strategy seamlessly conducts
an online distillation of the knowledge (i.e., representations)
from TimeFormer branch to the base branch during each
optimization step, as a result of which, the two conver-
gence curves share nearly identical trends. This pattern is
also similar to the two-stream design in Modern Contrastive
Learning, such as SimSiam [7] and SimCLR [6].
Why temporal size will not affect performance. Ran-
dom sampling along the time dimension yields a sub-
graph, where each sampled timestamp is treated as a node-
analogous to the subgraph sampling strategy in Graph-
SAGE [20]. By learning temporal dependencies within ran-
domly sampled subgraphs, the model progressively estab-
lishes connections among all timestamps over successive
training iterations, regardless of the batch size. This facil-
itates robust and globally consistent optimization over the
entire graph structure. This also explains why random sam-
pling is more robust than continuous sampling in Tab. 5a,
because it promotes interactivity among different times-
tamps, leading to robust reconstruction.

C. Implementation

In this section, we provide the Pytorch [44] code of Time-
Former in Alg. 1 and two-stream optimization strategy in
Alg. 2, to clarify the framework in Fig. 3.

Alg. 1 is an additional explanation for Fig. 4, includ-
ing three parts: 1) Position Encoding (PE), 2) Definition
of Transformer encoder, 3) Definition of tiny MLP. Note
that we use a shared TimeFormer on all Gaussians in the
canonical space.

The Transformer Encoder receives input structured as
[seq len, seq batch, channel], and we input x structured as

Algorithm 1: Implementation of TimeFormer.
class TimeFormer (nn.module):

d in: here is 4, (x, y, z, t)

L: frequency of Position Encoding (PE) �
def init (self, d in, L, nhead, d hidden,

n layer):

PE: PE function, PE ch: d in⇥2L

self.PE, PE ch = get PE(L=L, d in=d in)

define Cross-Temporal Encoder

layer = nn.TransformerEncoderLayer(PE ch,

nhead, d hidden,

activation=nn.functional.tanh)

self.encoder =

nn.TransformerEncoder(layer, n layer)

define Tiny MLP

self.mlp = nn.Linear(PE ch, 3)

x: [seq len, seq batch, channel]

def forward(self, x):

PE x = self.PE(x)

h = self.encoder(PE x)

h = self.mlp(h)

return h

[B, N , 4], where B is the size of time batch, N is the
number of Gaussians and 4 means 3 position channel and 1
channel for the timestamp. Alg. 2 shows how we construct
input to time.

In Alg. 2, we introduce the process in a time batch in
detail. We first construct input to TimeFormer by concate-
nating Gaussian positions and sampled time stamps, as in
Sec. 4.2. Besides the original branch where the deforma-
tion function is directly performed on the canonical space,
we add another TimeFormer branch. TimeFormer calcu-
lates prior offsets “offset t” via cross-time relationships be-
fore the deformation field. These two branches are opti-
mized at the same time during training, while the Time-
Former branch can be removed during inference.

D. Ablation Studies

We provide more detailed ablation results on three scenes
on NeRF-DS Dataset [68], as in Tab. 9. This further il-
lustrates that TimeFormer is not sensitive to the number
of transformer encoder layers M . However, we observe a
significant decrease in reconstruction quality on all scenes
without shared deformation fields.

TimeFormer does not overfit training frames due to
two designs: 1) the shared deformation field between the
base and TimeFormer branches promotes consistent feature
learning, and 2) random timestamp sampling during op-
timization introduces variability for better generalization.
Ablation studies further show that TimeFormer is not sensi-
tive to hyperparameters like batch size (Tab. 5) or weight �t

(Tab. 8).

E. Analysis on Canonical Space & FPS

Apart from Fig. 2, we provide more results in Fig. 13 and
Fig. 14, as a further illustration on TimeFormer’s capabil-

Algorithm 2: Two-Stream Optimization Strategy.
timeformer: TimeFormer

deform: Shared Deformation Field

N: number of Gaussians

GS: Gaussians in the canonical space

B: size of time batch

B = 4

lambda t = 0.8

Vs, Ts: sampled cameras and timestamps

images gt: sampled GT images

Vs, Ts, images gt = random.sample(Dataset, B)

construct input to TimeFormer

[N, 3] => [B, N, 3]

G expanded = GS.xyz.unsqueeze(0).expand(B, -1, -1)

[B] => [B, N, 1]

T expanded = Ts.unsqueeze(1).expand(-1,

N).unsqueeze(2)

src: [B(seq len), N(seq batch), 4(channel)]

src = torch.cat((G expanded, T expanded), dim=2)

offset t: [B, N, 3]

offset t = timeformer(src)

use iterations to save cuda memory

loss = 0.0

for i in range(B):

original branch

simplified: (xyz, t) => d xyz

d xyz = deform(GS.xyz, Ts[i])

image = splatting(GS, Vs[i], d xyz=d xyz)

loss += L1(image, images gt[i])

TimeFormer branch: use offset t[i,:,:]

d xyz t = deform(GS.xyz+offset t[i,:,:], Ts[i])

image t = splatting(GS, Vs[i], d xyz=d xyz t)

loss += lambda t * L1(image t, images gt[i])

Optimize shared deformation field, TimeFormer

and Gaussians in the canonical space

loss.backward()

deform.optimizer.step()

timeformer.optimizer.step()

GS.optimizer.step()

�t 0.8 0.5 1.0 Baseline
PSNR" 26.05 26.01 25.99 25.44

Table 8. TimeFormer is not sensitive to �c (NeRF-DS Dataset)

ity to reduce Gaussians in the canonical space and improve
inference speed. TimeFormer promotes more efficient spa-
tial distribution of Gaussians in the canonical space, leading
to improvements in reconstruction quality while simultane-
ously eliminating a substantial number of redundant Gaus-
sians compared to baseline methods.

Setting Bell Press Sieve Mean
PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS# PSNR" SSIM" LPIPS#

Baseline 24.92 0.854 0.126 25.68 0.866 0.141 25.71 0.881 0.108 25.44 0.867 0.125
M=1 25.67 0.872 0.097 26.17 0.867 0.141 26.04 0.884 0.113 25.96 0.874 0.117
M=2 25.46 0.872 0.104 26.01 0.866 0.139 26.22 0.883 0.116 25.90 0.874 0.120
M=3 25.87 0.875 0.095 26.29 0.865 0.138 26.00 0.887 0.104 26.05 0.876 0.112
M=4 25.71 0.870 0.103 26.09 0.865 0.14 26.33 0.885 0.115 26.04 0.873 0.119

w/o Shared 24.12 0.832 0.137 25.01 0.854 0.146 25.29 0.869 0.113 24.81 0.852 0.132

Table 9. Ablation Results of three scenes press, sieve and bell on NeRF-DS Dataset [68].

Points: 189.7 k FPS: 25.4 Points: 101.1 k FPS: 47.7

DeformGS PSNR: 27.07 +TimeFormer PSNR: 28.01

Points: 169.7 k FPS: 28.5 Points: 62.5 k FPS: 77.4

DeformGS PSNR: 28.17 +TimeFormer PSNR: 29.69

Figure 13. Comparisons of Canonical Space, FPS on Hypernerf Dataset [42].

Points: 46.8 k FPS: 80.3 Points: 15.9 k FPS: 207.1 Points: 39.3 k FPS: 90.7 Points: 16.7 k FPS: 189.5

DeformGS PSNR: 20.62 +TimeFormer PSNR: 20.93DeformGS PSNR: 24.46 +TimeFormer PSNR: 25.18

Figure 14. Comparisons of Canonical Space, FPS on NeRF-DS Dataset [68].

