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Supplementary Material

1. Implementation details

We employ EVA02-E-14-plus from OpenCLIP [5]. We
sample 10,000 points from the 3DGS. During training, we
freeze the vision and text encoders in EVA-CLIP-T, only
leaving CLIP-GS as the learnable component. The model
is optimized with the Adam [6] optimizer with a weight-
decay of 0.05. The learning rate is set to 5 x 10~ for GS-
Tokenizer, and 1 x 10~ for other modules. The model is
trained for 5 epochs on the triplets with § NVIDIA A6000
GPUs. e.g., CLIP-GS-B with ~ 9 million parameters, con-
verges in approximately 14 hours with batch size = 32 on
each A6000 GPU.

2. Additional Experiments

Training from scratch. To avoid the impact of initializing
with the point cloud pre-trained weights, we train CLIP-
GS and Uni3D from the 2D pretraining model EVA-CLIP,
as shown in Tab. 1. CLIP-GS outperforms Uni3D by
+3.1 Topl accuracy, suggesting that the additional 3DGS
attributes are effectively utilized. This leads us to reason-
ably infer that with larger-scale training data, 3DGS will
demonstrate even greater advantages.

‘ 3D repr ‘ Topl  Top3  Top5

308  51.1  59.84

339 556 64.0

Uni3D P&C
CLIP-GS 3DGS

Table 1. Training from scratch. P&C' denotes only P and C
attributes from 3DGS is used.

Using fewer points. We use fewer gaussian points to stimu-
lating 3D expression capabilities of 3DGS in Tab. 2. CLIP-
GS outperforms Uni3D by +2.3 and +3.1 Topl accuracy
when using 5K/2.5K points. This leads us to reasonably
infer that with more complex 3D scenarios, 3DGS will
demonstrate even greater advantages.

‘ num points ‘ 3D repr ‘ Topl Top3  Top5

Uni3D ‘ K ‘ P&C ‘ 435 637 712
CLIP-GS 3DGS | 458 655 739
Uni3D ‘ 55K ‘ P&C ‘ 424 628 702
CLIP-GS 3DGS | 455 650 733

Table 2. Using fewer gaussian points. P&C' denotes only P and
C attributes from 3DGS is used.

Number of view selected in Liy,g. We investigate using
different numbers of views in Lin,. We set K=2, 4, 5, and

8 in Liyg in Tab. 3. It is evident that the model’s perfor-
mance improves as the number of views increases. Using
K =8 results in only a 0.1 improvement while increasing the
training cost. Therefore, we choose K=5 as the default.

K | Topl Top3 Tops
2 480 700 770
4 483 701 772
5(default) | 485 703 775
8 486 706 778

Table 3. Number of views (K) in Lin,.

Number of view selected in Li,z. We use the more ad-
vanced Cap3D [10] to provide better captions. In Tab. 4, we
compare the captions from BLIP-2 [7] (provided by Open-
shape [9]) and Cap3D. We also include the results of fine-
tuning Uni3d on the P&C attributes. Results show that dif-
ferent captions exhibit similar performance, indicating that
captions are not the key determining factor.

‘ Caption ‘ 3D repr ‘ Topl  Top3  Top5
Uni3D P&C 469 685 759
Cap3D
CLIP-GS 3DGS 485 703 715
Uni3D P&C 46.1 677 746
OpenShape
CLIP-GS 3DGS 480 702 716

Table 4. 3D shape captions from BLIP-2 and Cap3D. P&C' de-
notes only P and C attributes from 3DGS is used.

Evaluated on real-world datasets. To validate the general-
ization ability of CLIP-GS, we collect 11 real-world scenes
from the Mip-NeRF-360 dataset [2] (as shown in Fig. 1)
and generate the corresponding 3DGS, following the ap-
proach outlined in Sec. 3. The zero-shot classification re-
sults are shown in Tab. 5.

‘ Topl Top3 Top5

Uni3d 9.1 9.1 18.2
CLIP-GS 9.1 36.4 455

Table 5. Comparison with Uni3d on Mip-NeRF-360 (real-world
scans).

Applying to segmentation tasks. We use Uni3D or CLIP-
GS as the backbone and add a segmentation head [8] for
3D segmentation. Both Uni3D and CLIP-GS are trained on
CloSe-Di [1] for 10 epochs. The 3DGS generation process
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Figure 1. 11 Real-world scans from Mip-NeRF-360. Zoom in for
a better view.

follows the approach outlined in Sec. 3. Tab. 6 presents the
3D mloU results on CloSe-Di.

‘ mloU

Uni3d 87.0
CLIP-GS 89.0

Table 6. Comparison with Uni3d on CloSe-Di (segmentation).

3. Excluded and Retained 3D shapes

We filter the 3D shapes in Objaverse [3, 4] and select those
with a diversity of colors and textures. We use LLaVA-
OneVision-7B to filter out meaningless 3D shapes and re-
move shapes that feature fewer than five distinct colors. The
prompt used for filtering is: “{Img} The image is rendered
from a 3D model. Is this 3D model meaningless? Answer
yes or no without explanation”

In this section, we provide a visual comparison of the re-
tained and excluded 3D shapes, as shown in Fig. 2. We ex-
cluded monochromatic, meaningless 3D shapes. e.g., items
like the Christmas tree, car, and bucket in the first row of
Fig. 2 only contain the contours of the 3D objects, with col-
ors that are single-toned and lack texture information. The
retained 3D shapes have colors with intricate texture details,
which are difficult for point clouds to depict.

4. Retrieval Results

In Fig. 3, we showcase how CLIP-GS successfully retrieves
3D shapes from text or real-world images. We retrieve the
most similar or the Top 2 / Top 3 similar 3D shapes accord-
ing to the corresponding images or text. CLIP-GS performs
well when retrieving real-world images (Fig. 3 top). CLIP-
GS has learned the encoding of 3DGS and can align the
features of 3DGS well with the image spaces, allowing it
to retrieve the most suitable 3D shapes based on the input
of one or two images. Moreover, the results indicate that

CLIP-GS retrieves reasonable 3D shapes based on text in
the query set (Fig. 3 bottom). This retrieval is not limited by
category, and CLIP-GS can retrieve reasonable expressions
(e.g., smiling), textures (e.g., antique), and other informa-
tion that is easily lost in point cloud representations.
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Figure 2. Visualization of the sampled 3D shapes.
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Figure 3. Image / text — 3D shape retrieval results. Top: we query the most similar or top 2 similar 3D shapes for each text. Bottom: we
take one or two images as inputs and retrieve the most similar 3D shape.
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