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A. Proof of Proposition 1, Corollary 1, and
Corollary 2

Proof of Proposition 1
Statement:

For a set of LoRAs {BkAk}Kk=1, each with rank 1, where
K is the total number of LoRAs, the representation space
of a single LoRA with rank K contains, and is at least as
expressive as, the union of the representation spaces of the
individual rank-1 LoRAs.

Proof:
Each rank-1 LoRA BkAk can be expressed as the outer

product of two vectors (since rank 1 implies that both Ak

and Bk are vectors). The combined effect of these LoRAs
is given by the sum:

M =

K∑
k=1

BkAk.

The rank of M satisfies:

rank(M) ≤
K∑

k=1

rank(BkAk) = K,

since the sum of K rank-1 matrices has rank at most K.
Now, consider a single LoRA BA with rank(BA) = K.

This single LoRA can represent any linear combination of
up to K linearly independent rank-1 matrices. Therefore,
it can represent any matrix M that is the sum of K rank-1
matrices.

Thus, the representation space of the single LoRA BA
with rank K includes all possible combinations that can be
formed by the individual rank-1 LoRAs {BkAk}.
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Proof of Corollary 1

Statement:
For a set of LoRAs {BkAk}Kk=1, the combined represen-

tation capability does not exceed that of a single LoRA with
rank r =

∑K
k=1 rank(BkAk).

Proof:
For each LoRA matrix BkAk, let its rank be rk =

rank(BkAk). By the rank decomposition theorem, each
BkAk can be expressed as a sum of rk rank-1 matrices.
That is,

BkAk =

rk∑
i=1

Bk,iAk,i,

where Bk,iAk,i are rank-1 matrices.
Consider the sum of all the LoRA matrices:

M =

K∑
k=1

BkAk =

K∑
k=1

rk∑
i=1

Bk,iAk,i.

The total number of rank-1 matrices in this sum is r =∑K
k=1 rk.
By Proposition 1, the set of rank-1 matrices {Bk,iAk,i}

can be represented within the space of a single LoRA matrix
BA of rank r. Therefore, there exist matrices B and A such
that

M = BA,

with rank(BA) = r.
Since the combined effect of the original LoRA matri-

ces {BkAk} can be represented by a single LoRA matrix of
rank r, it follows that their combined representation capa-
bility does not exceed that of a single LoRA of rank r.

■
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Proof of Corollary 2
Statement:

For a LoRA BA with rank r, the LoRA B(A⊙σ(T )) can
be decomposed into any set of LoRA groups {BkAk}Kk=1,
provided that the constraint r ≥

∑K
k=1 rank(BkAk) holds.

Here, T is a matrix with the same shape as A, and σ is a
non-linear activation function.

Proof:
Define M = A ⊙ σ(T ), where A ∈ Rm×n and σ(T ) is

defined as:

σ(T ) = [[t1]m, [t2]m, . . . , [tn]m],

where [ti]m is a column vector of size m, with all entries
equal to ti. The rank of M depends on the structure of both
σ(T ) and A:

If ti = 0 for certain indices, the corresponding columns
of M are zero, reducing the rank of M . Consequently, the
rank of M , denoted r′, satisfies:

r′ = rank(M) ≤ min(rank(A), rank(σ(T ))).

From Corollary 1, a LoRA group with a total rank r
is at most as expressive as a single LoRA BA with rank
r. Similarly, a LoRA group with a total rank r′ is at most
as expressive as the configuration B(A ⊙ σ(T )), where
rank(M) = r′.

Now consider decomposing B(A⊙σ(T )) into K LoRA
groups:

B(A⊙ σ(T )) ≈
K∑

k=1

BkAk,

where rank(BkAk) = rk. By the additive nature of rank,
the total rank satisfies:

K∑
k=1

rk ≤ r′ ≤ r.

Thus, if the total rank satisfies r ≥
∑K

k=1 rank(BkAk),
the configuration B(A⊙σ(T )) can be decomposed into any
LoRA group where the total rank does not exceed r.

■

B. Implementation Details on Downstream
Tasks

Base model setting LLaVA-1.5-7B integrates a CLIP
ViT-L [7] with an image resolution of 336px and a patch
size of 14, a two-layer MLP projector to map visual features
into tokens, and Vicuna v1.5 [2] as the language model.
In our setup, we omit any special tokens, such as image
indicator tokens, to enclose visual tokens.

Optimization setting For optimization, we use the Adam
optimizer across all trainable parameters. During the pre-
training stage, we set a global batch size of 256 and a learn-
ing rate of 0.001 with no weight decay. In the fine-tuning
stage, we use a global batch size of 128, setting the learn-
ing rate to 0.0002 for the LMM adapter and 0.00002 for the
vision feature projector, respectively.

Implementation Details of Deformable Attention For the
input to deformable attention, we use the anchor feature
(extracted from the second-to-last feature map of the CLIP
ViT-L image encoder) as the query embeddings. The key
and value embeddings are sampled from points in multi-
level reference feature maps, specifically obtained from the
2nd-to-last, 8th-to-last, 14th-to-last, and 20th-to-last layers
of the CLIP ViT-L encoder. The number of sampled ref-
erence points matches the number of image patches (e.g.,
(336/14)2 = 242 for LLaVA-1.5-7B) and is initially
distributed uniformly across the feature map, following the
methodology described in Deformable DETR [10].

C. Experimental setup on MLLM Bench-
marks.

Benchmarks and metircs For the general benchmark
evaluation, following LLaVA [4], we use a 558K
subset of the LAION-CC-SBU dataset [8] and the
llava-v1.5-mix665k dataset [4] for instruction fine-
tuning. Four widely used MLLM benchmarks are used
for evaluation, including MMBench [6], SEED-Bench [3],
and LLaVA-Bench In-the-Wild ( LLAVAW ) [4]. The first
three benchmarks assess various MLLM capabilities, such
as perceptual understanding and visual reasoning, through
binary yes/no questions (MME) or multiple-choice ques-
tions (MMBench and SEED-Bench). We use the image-
only subset of SEED-Bench (SEEDI), a popular choice for
many image-based MLLMs [1, 9].

Training Data Configuration for the Two Training
Stages. For the UniFood dataset, we employ descriptive
tasks—specifically, ingredient recognition and recipe gen-
eration—in the first training stage to train the vision pro-
jector and VCE module. In the second stage, the vision
projector, VCE module, and LLM adaptor are trained using
all available task data. For Flickr30k and ScienceQA, the
full set of multimodal training data is used in both stages.
For general MLLM benchmarks, please refer to the training
data configuration of LLaVA 1.5 7B-LoRA [5] for details
on each stage.

Implementation Details. Our experiments are conducted
on a setup with 4 × A100 GPUs (80GB). The selected
layers for LLM adapter injection match those used in
LLaVA-1.5-7B-LoRA [4], with the adapter rank r set
to 128 and scaling factor α set to 256.



D. More Qualitative Results
We present additional qualitative results, encompassing
both general visual tasks and downstream tasks. For
the downstream tasks on the UniFood dataset, since
no official fine-tuned version is available, we fine-tune
LLava-1.5-7B using vanilla LoRA on UniFood. The
comparison between the baseline method and our proposed
approach demonstrates that our method generates more
comprehensive and accurate answers, as shown in Figures 1
and 2. Furthermore, it produces answers with significantly
greater knowledge consistency on downstream tasks com-
pared to the vanilla LoRA fine-tuning method, as illustrated
in Figures 3 and 4.

E. Performance with Varying Layer Feature
Maps as Anchor Features

We assess performance by selecting different layers as an-
chor features to project vision features onto the UniFood
dataset within the VCE module. The results, presented in
Table 1, indicate that the best performance is achieved when
the anchor layer aligns with the vision feature projection
layer in the pretrained model. In contrast, using other lay-
ers may degrade performance, likely due to misalignment
between their feature maps and the pretrained knowledge
embedded in the model.

anchor layer IoU(↑) F1(↑) BLEU(↑) Rouge-L(↑) pMAE(↓)
-2 24.5 33.5 14.7 42.2 49.1
-8 20.25 29.99 12.67 38.86 53.03

-14 16.75 25.82 10.1 34.88 58.23
-20 13.68 21.54 7.15 30.27 65.55

Table 1. Performance vs. different anchor layers on UniFood.

F. Detailed Results on Memory vs. Perfor-
mance of LLM Adapter

This section presents detailed results on the performance
and memory usage of the LoRA adapter under varying rank
settings on the UniFood dataset. As listed in Table 2, we
present the results of the vanilla LoRA and Dual-LoRA
across three configurations of total rank values (32, 64,
and 128). The results indicate that Dual-LoRA consis-
tently outperforms the vanilla LoRA counterparts across all
rank settings (32, 64, and 128) with only a slightly higher
number of parameters. Notably, Dual-LoRA achieves su-
perior performance even with fewer trainable parameters
than LoRA with higher ranks, such as Var2-Dual-LoRA vs.
Var3-LoRA and Var5-LoRA, as well as Var4-Dual-LoRA
vs. Var5-LoRA.



Rank LMM Adapter LMM Adapter
Memory Size

Ingredient Recognition Recipe Generation

IoU F1 SacreBLEU Rouge-L

var1 32 LoRA 32M 19.2 29.7 10.4 41.1
var2 Dual-LoRA 48M 22.7 +18.1% 33.6 +13.3% 12.9 +24.1% 41.3 +0.3%

var3 64 LoRA 64M 20.6 31.3 12.7 41.3
var4 Dual-LoRA 96M 23.0 +11.7% 33.7 +7.7% 14.4 +13.1% 41.7 +0.9%

var5 128 LoRA 128M 21.6 32.5 13.0 41.3
var6 Dual-LoRA 192M 23.6 +8.9% 34.4 +5.9% 14.8 +14.3% 42.9 +3.6%

Table 2. Performance and memory usage of the LoRA and Dual-LoRA adapters under different rank settings on the UniFood dataset. Only
the parameters of LoRA and Dual-LoRA are set to be trainable.

  The image is a captivating representation of the night sky, painted in 
the style of the famous artist Vincent Van Gogh. The canvas is filled 
with a vibrant display of stars, painted in various shades of blue and 
white, creating a sense of depth and dimension. The artist has 
skillfully used the technique of impasto, where paint is applied in 
thick layers, to add texture and a sense of movement to the scene.

In the foreground, a small village is depicted, with houses and trees 
painted in shades of green and brown. The contrast between the dark 
blue night sky and the lighter colors of the village creates a striking 
visual effect. The painting is a beautiful representation of the artist's 
unique style and his ability to capture the beauty of the night sky.

  The image is a painting of a night scene featuring a large, dark blue 
sky with a few stars visible. The painting also includes a moon, which is 
located towards the top right corner of the scene. The sky is filled with 
swirling clouds, creating a dynamic and dramatic atmosphere.

In the foreground, there is a small town with a church, a windmill, and a 
few houses. The town is situated below the night sky, creating a sense 
of depth and perspective in the painting. The combination of the night 
sky, the town, and the church creates a captivating and serene scene.

User: Can you give a short introduction to this painting?

LLaVA-1.5-7B:

Dual-LoRA + VCE:

Figure 1. Qualitative Results. Our proposed Dual-LoRA + VCE method accurately identifies the painting style, specifically Vincent Van
Gogh’s style, and provides more detailed insights into the artwork’s analysis.



  The image is a split-screen collage, showcasing two distinct 
landscapes. On the top, there's a breathtaking view of Iceland, a 
country known for its stunning natural beauty. The image captures a 
vast expanse of green and blue hues, with mountains and valleys 
stretching into the distance. The sky above is a clear blue, adding to the 
serene atmosphere.

On the bottom, the image transports us to Greenland, another land of 
natural beauty. The landscape here is a mix of snow-covered mountains 
and icy plains, with people scattered across the scene, possibly 
exploring or enjoying the view. The sky above is a darker shade of blue, 
suggesting a colder climate.

The collage is framed by a white border, and the words "This is why I 
have trust issues" are written in the top left corner, possibly hinting at 
the challenges faced by those who venture into such remote and harsh 
environments. The image, in its entirety, provides a glimpse into the 
awe-inspiring landscapes of Iceland and Greenland.

  The meme consists of three pictures, each showing a different 
landscape. The first picture displays a snowy mountain range, likely in 
Iceland, with a person skiing in the foreground. The second picture 
features a lush green valley, possibly in Greenland, with a person 
standing in the middle of the scene. The third picture showcases a 
cloudy sky, which could be either Iceland or Greenland, with a 
person standing on a snowy hill.

The meme is accompanied by a caption that reads, "This is why I have 
trust issues." The caption seems to be a play on words, as the pictures 
depict different environments, but the person in each picture is 
wearing the same backpack. The caption might be suggesting that the 
person in the pictures is untrustworthy or unreliable, as they are seen in 
various locations with different landscapes.

User: Can you explain this meme?
LLaVA-1.5-7B:

Dual-LoRA + VCE:

Figure 2. Qualitative Results. Our proposed Dual-LoRA + VCE method provides more accurate answers, correctly describing both the
views of Iceland and Greenland depicted in the image. However, neither the baseline method nor our approach fully captures the humor
of the image, which lies in the fact that the land names do not align with their literal meanings or actual landscapes, thereby leading “trust
issues”.



User: Can you list the ingredients present in this dish?

   The ingredients include chicken_wings, soy_sauce, sugar, sake, mirin, 
ginger and garlic.

   The ingredients include chicken_wings, soy_sauce, sugar, sake, mirin, 
ginger, garlic_cloves, sesame_oil and sesame_seeds.

LLaVA-1.5-7B-LoRA:

Dual-LoRA + VCE:

  The instructions are as follows: in a small bowl, mix together the soy 
sauce, sugar, and cornstarch. set aside. in a large bowl, mix together the 
chicken, soy sauce mixture, and ginger. cover and refrigerate for 1 hour. 
preheat the oven to 350 degrees f. in a small bowl, mix together the honey, 
soy sauce, and ginger. set aside. in a large baking dish, place the chicken 
and pour the honey mixture over the chicken. bake for 30 minutes, or until 
the chicken is cooked through.

 The instructions are as follows: cut the chicken into bite-sized pieces. 
combine the ingredients for the sauce in a small bowl. heat the oil in a frying 
pan over medium heat. add the chicken and cook until browned. add the 
sauce and cook until the chicken is cooked through.

LLaVA-1.5-7B-LoRA:

Dual-LoRA + VCE:

User: How to make this dish?

<Input image>

Knowledge Inconsistency in Ingredient Prediction !

Knowledge Consistency in Ingredient Prediction

Chicken Wings with 
Honey and Soy Sauce

Figure 3. Qualitative Results. The Dual-LoRA + VCE model provides a more accurate and consistent response, seamlessly aligning
the ingredients and cooking method with the dish’s presentation and its likely preparation process. In contrast, the LLaVA-1.5-7b-LoRA
model, though detailed, introduces unnecessary elements and inconsistencies, rendering it less reliable for precise food analysis. This
underscores the superior effectiveness of the Dual-LoRA + VCE model in resolving data conflicts and ensuring contextual accuracy.



User: Can you list the ingredients present in this dish?

   The ingredients include chicken_breasts, butter, garlic_powder, salt, 
pepper, dried_breadcrumbs and parmesan_cheese.

   The ingredients include chicken_breasts, salt, pepper, garlic_powder, 
dried_oregano, dried_basil, dried_thyme, dried_rosemary, dried_parsley, 
dried_marjoram, dried_sage, dried_tarragon, dried_chives, 
dried_onion_powder, dried_garlic_powder.

LLaVA-1.5-7B-LoRA:

Dual-LoRA + VCE:

  The instructions are as follows: preheat oven to 350 degrees f. mix 
together the flour, salt, pepper, and garlic powder. in a large bowl, mix 
together the chicken, egg, and bread crumbs. coat the chicken with the flour 
mixture. place the chicken in a 9x13 inch baking dish. bake for 30 minutes, 
or until the chicken is cooked through.

 The instructions are as follows: preheat oven to 350 degrees. in a shallow 
dish, combine the flour, salt, pepper, and garlic powder. in another shallow 
dish, combine the panko crumbs and parmesan cheese. dip each chicken 
breast in the flour mixture, then in the egg, then in the panko mixture. place 
on a baking sheet and bake for 20 minutes, or until chicken is cooked 
through.

LLaVA-1.5-7B-LoRA:

Dual-LoRA + VCE:

User: How to make this dish?

<Input image>

Knowledge Inconsistency in Ingredient Prediction !

Knowledge Consistency in Ingredient Prediction

Low Fat Oven Bake 
Crispy Chicken

Figure 4. Qualitative Results. This comparison highlights the strengths of the Dual-LoRA + VCE model in generating consistent,
contextually accurate responses to both ingredient prediction and recipe instructions. In contrast, the LLaVA-1.5-7b-LoRA model struggles
with knowledge consistency, providing a lengthy and potentially over-generalized ingredient list and instructions that do not fully align
with the dish.
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