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Supplementary Material

In this supplementary material, we present more details and
analysis as well as results of our work, as follows,
S1 Mobile Robotic Platform
In this section, we demonstrate more details of our mobile
robotic platform used for multimodal data collection.

S2 Annotation Tool

We display more details of the annotation tool in labeling
sequences with 9DoF 3D bounding boxes and its reliability
analysis for high-quality annotation.

S3 7DoF and 9DoF Parameterization
We provide detailed explanations about 7DoF and 9DoF
box parametrization.

S4 More Statistics
We demonstrate more statistics on GSOT3D regarding
sequence length and per-category point density.

S5 Analysis of Annotation Accuracy
We analyze the accuracy of 3D annotations in GSOT3D.

S6 Evaluation Metrics and 3D IoU
We demonstrate detailed process on how to calculate the
evaluation metrics and 3D IoU.

S7 Formulation of Different 3D SOT Tasks
‘We describe the formulation of different 3D SOT tasks.

S8 Details of Feature Transformation Block
We present the details of the feature transformation block
adopted in our PROT3D.

S9 Loss Function
We present details of the loss function to train PROT3D.

S10 Summary of Evaluated Trackers
We offer a summary for trackers assessed on GOST3D.

S11 Experiments on Unseen Categories

We product experiments on unseen categories to evaluate
the generalization capability of trackers.

S12 Additional Discussions on GSOT3D

We provide additional discussions on our GSOT3D.

S13 Qualitative Results

We offer qualitative analysis on GSOT3D.

S14 Maintenance and Responsible Usage of GSOT3D
for Research

We discuss the maintenance and responsible usage of our
proposed GSOT3D for research.

S1 Mobile Robotic Platform

To collect multimodal data for GSOT3D, we build a mobile
robotic platform based on Clearpath Husky A200. Multiple
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Figure 1. Our mobile robotic platform for data collection.

Table 1. Specific configuration of our mobile robotic platform.

Device Name  Specification

LiDAR Sensor  Ouster OS-64 (64-beam)
Depth Camera  OAK D-Pro

RGB Camera FLIR BFS-U3-3254C-C
Robot Chassis  Clearpath Husky A200

sensors, including a 64-beam LiDAR, an RGB camera and
a depth camera, are deployed on the platform with careful
calibration using the tool from [3]. Fig. 1 shows the picture of
our mobile robotic platform for multimodal data acquisition
in developing GSOT3D, and the specific configuration of
sensors and robot chassis are listed in Tab. 1.

S2 Annotation Tool

For data labeling, we use the annotation tool provided by
a company. The commercial software is to draw 3D boxes,
and does not support auto-propagation of 3D box annotation.
Fig. 2 shows the interface for 3D bounding box annotation.
Specifically, for each point cloud frame, we perform initial
annotation of the target object by drawing a 3D bounding
box in the annotation region (note, this region can be flexibly
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Figure 2. Annotation interface of our used annotation tool.
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Figure 3. Statistics on GSOT3D. Image (a): Distribution of sequence length. Image (b): Average number of points in each object category

zoomed in or out). Then, the initial 3D bounding box is the obtained annotation is reliable. Please note that, all the
refined by adjusting the 2D boxes on each projected view on annotations from the labeler will be inspected careful by the
XY, XZ, and YZ planes. In the annotation tool, a preview experts (see this part in the main text) and further refined (by
of the 3D box in the RGB image is provided for visual the same labeler) if necessary for high quality.

inspection of the refined box. By doing this, we can ensure



S3 7DoF and 9DoF Parameterization

7DoF box has (x,y, z, w, h,1,0,), with (x, y, z) the box cen-
ter coordinates, (w, h, ) the box width, height, and length,
and 6, the heading angle along z-axis, while 9DoF box has
(x,y,2,w,h,1,0,,0,,0,) with the extra two 6, and 6, the
heading angles along x- and y-axis. Compared to 7DoF con-
sidering rotation around one axis, 9DoF considers full rota-
tions around all three axes and is more flexible and accurate
to describe targets, thus having more application scenarios.
For this reason, we adopt 9DoF box in our GSOT3D.

S4 More Statistics

In this section, we demonstrate more statistics of GSOT3D.
Specifically, Fig. 3 (a) shows distribution of sequence length
on GSOT3D. Although the average length of GSOT3D is
198 frames, there exist several relatively longer ones with se-
quence length larger than 600 frames, which can be used for
analyzing trackers on relatively longer sequences. Besides,
Fig. 3 (b) demonstrates the average number of points for
each category. We can clearly see that, the categories of bus,
car, and van on average contain the most number of points,
while the categories of dog and mineral_water consist of
the least number of points. We hope this statistics can help
readers better understand our GSOT3D.

S5 Analysis of Annotation Accuracy

We follow Track-it-in-3D [16] to analyze the accuracy of
3D bounding box annotations in GSOT3D. In specific, we
project 3D boxes onto 2D plane to obtain 2D annotations
and then manually re-label 10% of data in GSOT3D with 2D
boxes. We calculate the average projection error and average
IoU between them, which is 8.9 pixels and 83%, indicating
that our 3D annotation is reliable.

S6 Evaluation Metrics and 3D IoU

Inspired by [8], we use Average Overlap (AO) and Success
Rate (SR) as our indicators. The AO represents the average
overlap between ground truth and estimated bounding boxes
in a sequence, while the SR denotes the percentage of suc-
cessful tracking frames with overlaps exceeding a threshold.
The AO and SR of the i*? sequence can be calculated via
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where N, represents the length of the i*" sequence, p; and
g; the predicted bounding box and ground truth (GT) in the
4 frame. 7 is the threshold for successful tracking. I (-)
is the Indicator Function, which takes the value 1 when

ey

the condition is met and 0 otherwise. §2 (p;, g;) denotes the
intersection over union (IoU) of the GT and prediction for
the 5 frame, which can be written as follows,
p] N g] (2)
pj U g]

Unlike existing benchmarks (e.g., KITTI [7], Track-it-in-
3D [16]) that directly take the average on a frame-wise or
sequence-wise, we leverage mean Average Overlap (mAQO)
and mean Success Rate (mSR) to measure different tracking
algorithms on both sequence-wise and category-wise, similar
to [8], aiming to provide class-balanced metrics that can
reflect the general tracking performance. Specifically, mAO
is calculated by averaging the class-wise overlaps, i.e., 3D
Intersection over Union (3D IoU, which will be described
later), between all tracking results and the groundtruth, and
mSR computes the class-wise percent of successful frames
in which 3D IoU is larger than a threshold. mAO and mSR
can be obtained as follows,
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where C' is the total number of object categories in GSOT3D,
S, the set of all sequences belonging to category c. AO;
represents AO for the i sequence in S., and SR; denotes
SR. mSR5¢ and mSR75 refers to mSR with thresholds of 0.5
and 0.75, respectively, when computing success rate.
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3D IoU. Conventional 3D IoU often does not consider targets
that have symmetric structure. However, in our GSOT3D,
there exist many targets with symmetric structure, such as
ball, umbrella, and so on (148 sequences in total involved
with symmetric structure). In these cases, conventional 3D
IoU cannot be used for accurate measurement by consider-
ing a fixed direction. To deal with this, we adopt the strat-
egy employed in [1, 2] to calculate 3D IoU values between
bounding boxes in arbitrary directions. Specifically, the pre-
dicted bounding box is rotated k£ times along its axis of
symmetry, and the prediction yielding the maximum 3D IoU
among these k rotations is selected as the final result. In our
evaluation protocol, we set k = 120, as this configuration
achieves efficient computation while maintaining negligi-
ble error margins in the final measurement. The detailed
calculation process can be seen in [4].

Therefore, for non-symmetric targets, we adopt method
as in KITTI [7] for 3D IoU calculation, while for symmetric
targets, we use strategy as in [1, 2] for 3D IoU computation.

S7 Formulation of Different 3D SOT Tasks

GSOT3D is a unique platform to broaden research direction
in 3D SOT by supporting different tasks, comprising single-



Figure 4. Architecture of the feature transformation block.

modal 3D object tracking, i.e., 3D SOT on Point Cloud (PC)
(3D-SOTpc), and multi-modal 3D tracking, i.e., 3D SOT on
RGB-PC (3D-SOTRrgg-pc) or RGB-Depth (3D-SOTrgp-p)-

3D-SOTpc aims at locating the target object on the point
clouds. Given the PC sequence and the initial 9DoF 3D target
box, the goal is to estimate a set of 3D bounding boxes to
represent the target positions in the sequence. This process
can be formulated as follows,

{6}y < Toc({p;}il1, 1) 4)
where b1 = (1‘717 Yiy Ziy Wiy hi, li7 (679 67;, "}/1) is the 9DoF 3D
box in frame i (1 < i < N), with (2, s, 2:), (ws, hi, 1),

and (o, Bi, ;) the target position, scale, and rotation angle.

by is given in the first frame and {b;}}¥, are predicted by
the tracker Tpc. {p; }V, represent the PC sequence, and N
is the number of frames in the sequence.

Different from 3D-SOTpc, 3D-SOTggs.-pc integrates the
point clouds and RGB images for to locate target, aiming to
improve 3D tracking using appearance information. It can
be formulated as follows,

{b:}iLs < Traprc({P; iy, {141, b1) o)
where by is the initial 9DoF 3D box, {b;}¥, the predicted
results by the tracker Trgppc, {p; }Y.; and {I;} Y, the PC
and RGB image sequences, respectively.

Different than using PC, 3D-SOTggg.p exploits a more
economic way using RGB and depth images for 3D tracking,
and can be formulated as follows,

{6}y + Trepo({Di}ily, {1}, 01) (©)
where Trgg.p denotes the 3D tracker, { D; }¥_, are the depth

image sequence, and all others are the same as in Eq. (5).
By supporting different tracking tasks, GSOT3D expects

to expand research directions in 3D SOT.

S8 Details of Feature Transformation Block

Fig. 4 displays the feature transformation block (FTB) used
in each stage of our PROT3D. The feature transformation
block is borrowed from [15] for its effectiveness. In specific,
we first send the targetness mask M, and the point feature C
to the Point-to-Reference operation, which is composed of a
concatenation operation, a MLP, and an EdgeConv layer [13]
for feature aggregation, as follows,

g;‘ - poim_to-Reference(éf ) MtL )

. , @)
= EdgeConv(MLP(Concatenate(Cy, M})))

Table 2. Summary of evaluated trackers on GSOT3D.

Tracker Where Backbone  Transformer
P2B[11] CVPR’20 PointNet++ X
BAT [17] ICCV’21  PointNet++ X
PTT[12] IROS’21 PointNet++ v
M2-Track [18] CVPR’22 PointNet X
CXTrack [14] CVPR’23 DGCNN v
MBPTrack [15] ICCV’23 DGCNN v
SeqTrack3D [9] ICRA’24  PointNet++ v
MS3SOT [10] AAAI'24 DGCNN v

After this, the resulted feature gg’ is fed into a 3D CNN
network to generate point-wise feature. Fig. 4 illustrates
FTB. For more details, please kindly refer to [15].

S9 Loss Function

In this section, we present details regarding the loss function
for training PROT3D. Specifically, after the N stage, the
final feature xiv *1 is sent to the MLP layer for prediction.
Similar to previous work [15], we use the following loss

function for end-to-end training,
Lioal = AmLm + AL + )\pﬁp + AL + Lobox 3

where L, represents the total training loss, £, the stan-
dard cross-entropy loss to supervise the targetness mask, L.
the mean square loss to supervise the target center, £, the
cross-entropy loss to supervise proposal score, L the cross-
entropy loss to supervise the targetness score S, and Lypox
the smooth-L; loss to supervise the 9DoF box B; (including
3D center offset and 6D pose offset of size and angle). A\,
Ac» Ap, As are hyper-parameters to balance different losses
and are set to 0.2, 10.0, 1.0, and 1.0, respectively.

Our code will be publicly released, and more details can
be found in our implementation.

S10 Summary of Evaluated Trackers

To understand how existing trackers perform on GSOT3D
and to provide comparison for future research, we assess
eight representative trackers, including P2B [11], BAT [17],
PTT [12], M2-Track [18], CXTrack [14], MBPTrack [15],
SeqTrack3D [9], and M3SOT [10]. Please note that, these
evaluated 3D trackers are point cloud-based, as almost all
current 3D object trackers that share their implementations
belong to this category. Tab. 2 summarizes these trackers.

S11 Experiments on Unseen Categories

In order to further assess the generalization capability of
our PROT3D on unseen categories, we conduct additional
experiments with a different protocol. Specifically, in this
new protocol, we use 40 classes for training and other un-
seen 14 classes for test. This enables assessing trackers on
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Figure 5. Qualitative results of several evaluated trackers and our proposed PROT3D. We can see that, the proposed PROT3D locates target
object in different scenarios, showing its robustness for generic 3D object tracking.

Table 3. Experiments on unseen categories and comparison with performance under seen categories.

Seen Test Categories

Unseen Test Categories

Methods mAO 1 mSRs 1 mSRy7s T mAO mSRs 1 mSR7s T
M2-Track 20.26 14.34 1.88 19.08 13.81 1.64
MBPTrack 20.54 16.55 2.57 19.76 14.93 2.24
PROT3D (ours) 21.97 19.76 5.22 21.03 18.65 4.82

unseen classes. The results of our method and comparison
to other two state-of-the-art 3D point cloud trackers are in
Tab. 3. As shown in Tab. 3, despite slight performance drop
compared to the protocol with seen categories (in the main
text), PROT3D shows promising results on unseen classes
and surpasses other trackers, evidencing its effectiveness.

S12 Additional Discussions on GSOT3D

Discussion on Long-term Tracking. Currently, GSOT3D
is mainly focused on short-term 3D tracking, similar to [16].
Although its average sequence length is 198, there are se-
quences with more than 600 frames, which to some extent

can reflect tracking performance in long-term scenarios. We
are aware that in 2D object tracking (e.g., LaSOT [5] and its
extension [6]), the long-term 2D videos may consist of over
thousands of frames. However, considering our current goal
as well as the difficulties in manually collecting multi-modal
sequences for 3D tracking, we leave the exploration of long-
term 3D tracking dataset with average sequence length above
a thousand and related algorithms to our future work.

Discussion on the Extreme Scenario Conditions. In our
GSOT3D, we try our best to diversify scenarios when captur-
ing data. Besides normal daytime scenarios, it includes some
extreme scenarios conditions such as scenes with strong and
weak light. Please note that, limited by our mobile platform



and related policies, it is hard for us to collect data in rainy
and snowy weathers. This requires specific devices, and we
will explore this in future.

S13 Qualitative Results

In this section, we show qualitative results of different track-
ers and our PROT3D on GSOT3D in Fig. 5. From Fig. 5,
we can see that, existing state-of-the-art trackers such as
M2-Track, MBPTrack fail to accurately localize the target
object in challenging scenarios with frequent occlusions and
similar distractors, while our PROT3D can robustly locate
the target in these cases owing to its progressive refinement
strategy, showing its efficacy for generic 3D tracking.

S14 Maintenance and Responsible Usage of
GSOT3D for Research

Maintenance. Our GSOT3D will be hosted on the popular
Github (all download links and our models will be publicly
released). This enables conveniently checking the feedback
from the community, and thus allows for improvements via
necessary maintenance and updates by the authors. Besides,
the authors will try their best to collect evaluation results of
future trackers, aiming at providing up-to-date analysis and
comparison on GSOT3D. Our ultimate goal is to develop a
long-term and stable platform for 3D object tracking.

Responsible Usage of GSOT3D. GSOT3D aims to facilitate
research and applications of 3D single object tracking. It is
developed and used for research purpose only.
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