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Supplementary Material

1. Joint Optimization of 2D Gaussians and
Keyframe Poses

Once we obtain an initial set of coarse keyframe poses, we
jointly optimize the 2D Gaussians and the keyframe poses
based on the photometric and structural losses used in in [2].
These losses include a color consistency loss Lc, a depth
consistency loss Ld, a depth distortion loss Ldd, and a nor-
mal alignment loss Ln. The losses are computed between the
rendered and observed images within the pixels covered in
the object segmentation mask M. To further reduce camera
depth noise, we additionally use the Huber loss.

The color consistency loss Lc and the depth consistency
loss Ld is the L1 loss between the observed and the rendered
images. The losses are calculated after projecting the Gaus-
sians onto the image frame. Specifically, the Gaussians are
ordered according to their ascending z-depth in the camera
frame after which the contribution of each Gaussian to the
loss is weighted based on their opacity and Gaussian density.
This process is called α-blending. We represent the blending
weight of each of the N ordered Gaussians as

ωi(p) = αiG
2D
i (p)

i−1∏
j=1

(1−αjG
2D
j (p)) ; ∀i ∈ N (1)

We then calculate the color consistency loss Lc and the
depth consistency loss Ld as

Lc =
1

|M|
∑
p∈M

|ĉ(p)− c(p)| (2)

Ld =
1

|M|
∑
p∈M

ρ(|d̂(p)− d(p)|) (3)

where ρ(·) is the Huber loss, c(p) and d(p) are the ob-
served color and depth, and ĉ(p) =

∑
i∈N ciωi(p) and

d̂(p) =
∑

i∈N diωi(p) are the rendered color and depth at
a pixel p.

The depth distortion loss clusters the 2D Gaussians along
the ray path, minimizing gaps between intersected Gaussians
and enhancing depth accuracy.

Ldd =
∑
i,j∈N

ωiωj |zi − zj | (4)

where ωi is the blending weight for the ith Gaussian inter-
section, and zi denotes the depth of each intersection point.
Adjusting the intersection depth zi to encourage the concen-
tration of splats along the ray.

The normal loss Ln further refines object shape by align-
ing each Gaussian’s normal with the local surface gradient.

Ln =
∑
p∈M

1− n̂(p)⊤n(p) (5)

where n̂(p) and n(p) are the normals at pixel p estimated
by the gradient of the rendered and observed depth images
respectively. By aligning the splat normal with the estimated
normal, we ensure that the 2D splats accurately approximate
the local object surface.

For refining the keyframe poses, a learnable affine trans-
formation T k ∈ SE(3) of the kth keyframe is applied to
the 2D Gaussians similar to [3, 7]. The transformation T k

is represented by a rotation Rk ∈ SO(3) and a translation
tk ∈ R3. We learn the transformations along with the Gaus-
sians by minimizing the above-mentioned losses obtained
by projecting each Gaussian Gi ∈ G onto each selected
keyframe pose T k ∈ K as

G∗,K∗ = argmin
G,K

∑
k∈|K|

λcLc(Î(T k ⊙ G), Ik)

+λdLd(D̂(T k ⊙ G), Dk)

+λddLdd + λnLn

(6)

where Î and D̂ are the rendered color and depth images
obtained by projecting the Gaussians G to the kth keyframe
pose T k and Ik, Dk represent the observed color and depth
images of the kth keyframe. λc, λd, λdd and λn are the
relative weights for the color, depth, depth distortion and
normal losses respectively.

2. Metrics
To evaluate 6-DoF object pose estimation, we calculate the
Area Under Curve (AUC) percentage based on the ADD and
ADD-S metrics. The ADD metric determines the average
Euclidean distance between corresponding points on the
3D object model after transformation by the predicted and
ground truth poses.

ADD =
1

N

N∑
i=1

∥(Rxi + t)− (Rgtxi + tgt)∥, (7)

where N represents the number of points in the 3D object
model, xi denotes a point on the model, R and t are the
predicted rotation matrix and translation vector, and Rgt and
tgt are their ground truth counterparts. A lower ADD value
indicates a more accurate pose estimation. The estimation
is considered successful if the ADD is within a specific



threshold. For symmetric objects, where distinct poses may
appear identical (e.g., a cylindrical object rotated by 180°),
the ADD-S metric is more appropriate. Instead of directly
pairing corresponding points, ADD-S measures the average
distance between a transformed model point and its nearest
neighbor in the ground truth-transformed model.

ADD-S =
1

N

N∑
i=1

min
xj∈M

∥(Rxi + t)− (Rgtxj + tgt)∥, (8)

where xj ∈ M denotes the set of all 3D points on the object
model. This formulation accounts for the ambiguities inher-
ent to symmetric objects, providing a more robust evaluation
of pose estimation.

We assess 3D shape reconstruction performance by cal-
culating the chamfer distance between the reconstructed and
ground-truth points, adopting the symmetric formulation.

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q

∥p−q∥2+ 1

|Q|
∑
q∈Q

min
p∈P

∥q−p∥2

(9)
To extract meshes from reconstructed 2D splats, we render
depth maps of the training views by projecting the depth val-
ues of the splats onto the pixels. Truncated Signed Distance
Fusion (TSDF) is then used to fuse the reconstructed depth
maps, implemented using Open3D [8]. During TSDF fusion,
we set the voxel size to 0.002 and the truncation threshold
to 0.02. Additionally, we extend BundleSDF to render depth
maps and apply the same surface reconstruction technique
to ensure a fair comparison.

3. Implementation Details
For the object masks in the YCBInEOAT dataset, we utilize
the original masks provided in the dataset. For the HO3D
dataset, we use the masks extracted XMem [1], as done in
BundleSDF [6]. In real-time scenarios, we manually input
the initial object location as a prompt for a random frame
from the camera. Based on the prompted image, SAM2 [4]
segments the target object across video frames in real-time.

During coarse pose estimation, a new frame is designated
as a keyframe if it has more than 10 feature correspondences
with the frames in memory. For online graph optimization,
we retain the configuration of BundleSDF [6], restricting the
number of frames involved in pose graph optimization to a
maximum of 10.

For the Gaussian object field, we transform all graph-
optimized camera poses into the OpenGL camera representa-
tion, which is utilized for Gaussian splatting. OpenGL adopts
a right-handed coordinate system with the camera facing the
negative z-axis, whereas OpenCV uses a right-handed sys-
tem with the camera facing the positive z-axis. Using the
information from the first frame, we estimate the object size
and rescale and translate all camera poses and point clouds to

ensure the generated Gaussians fit within a canonical space
ranging from -1 to 1. Starting from the 10th keyframe, we
optimize the Gaussian object. We begin by fusing color point
clouds from the keyframes, followed by downsampling with
a voxel size of 0.01 m. We then cluster the points with a
maximum distance of 0.06m between points to remove out-
lier points. Subsequently, we uniformly upsample the point
cloud until the number of points exceeds 5000.

We initialize the Gaussian means with the point cloud
positions and random rotations. To simplify training and mit-
igate floating artifacts caused by oversized splats, Gaussian
scales are clipped between 0.005 and 0.01. We use Spherical
harmonics to represent the color, beginning at level 0 and
incrementing every 200 steps, up to level 2. We initialize the
opacity of each Gaussian with 0.1. Pose gradients for each
keyframe are initialized with six parameters, (3 for transla-
tions and 3 for the rotation in an axis-angle representation).
Before optimization, we group the keyframe poses using dif-
ferent anchors based on a default setting of an icosahedron
at level 1, yielding a total of 42 anchors. Keyframes with the
largest masks in each anchor cluster are selected for joint
optimization, which runs for 1000 steps.

After 500 steps, the opacity percentile-based Adaptive
Density Control is applied every 100 steps. Gaussians with
opacity values in the bottom 5th percentile are removed until
the 95th percentile opacity exceeds 0.5. Similarly, every 100
steps, keyframes with reconstruction losses exceeding twice
the median absolute deviation (MAD) are removed.

In the training loss, λc = 0.5, λd = 0.5, λdd = 0.05, λn

= 0.05. To mitigate depth noise, we apply morphological
erosion to the depth using a kernel size of 5. The Adam opti-
mizer is utilized for optimizing both the pose and Gaussian
parameters, with a decay rate set to 0.5. The initial learning
rate for Gaussians is consistent with the 2DGS [2] configu-
ration. After the joint optimization is run for 1000 steps, the
Gaussians’ attributes are fixed, and only the keyframe poses
are further refined for 500 additional steps.

All experiments were performed on a standard desktop
equipped with an AMD Ryzen 9 7950X3D 16-core Proces-
sor and a single NVIDIA RTX 4090 GPU. Only the temporal
efficiency experiments in Sec. ?? used a PC with a different
configuration. Our method utilizes two concurrently running
threads. The online tracking thread processes frames at ap-
proximately 4.1 Hz, while the Gaussian object field thread
operates in the background, requiring an average of 0.23
seconds per keyframe.

4. Limitations
Gaussian rasterization rendering is highly efficient and al-
lows for the rapid correction of minor translation and in-
plane rotation errors. However, it is less effective in gradient
computation compared to the differentiable ray casting em-
ployed by neural radiance fields. This limitation stems from



Figure 1. Rotation angle estimation from a side view is often in-
accurate for symmetric objects without texture information, as
exemplified by the AP10 object from the HO3D dataset.

the fact that pose gradients in Gaussian rasterization are ap-
proximated using the covariance matrix projected onto the
2D plane. As a result, gradient-based optimization for non-
in-plane rotations or substantial pose corrections becomes
problematic. For example, our method struggles to resolve
rotational errors around the symmetric axis of a water pitcher,
as shown in Fig 1.

5. Additional Ablation
A visual comparison of the different ablations in reconstruct-
ing a water pitcher from HO3D can be seen in Fig. 2. This
example is particularly difficult as there are large rotational
motions and large occlusions. In this example, we find that
neither of the ablations can accurately reconstruct the pitcher,
especially the handle. Rather, they end up with two partially
reconstructed handles as a result of inaccurate keyframe esti-
mates which cause points to be added from a new keyframe
with the handle visible. However, by combining the dynamic
keyframe selection and the opacity percentile-based adaptive
density control, our final approach reconstructs the handle
more accurately.

w/o
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Ours
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Ground
Truth

Ours
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w/o KF
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Figure 2. Object reconstruction example using the different abla-
tions over our approach.
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Figure 3. Qualitative results of our method on video sequences from the HO3D and YCBInEOAT datasets



Table 1. Comparison of ADD-S, ADD, and CD metrics, along with the Average Time Per Frame, across different methods on the HO3D
dataset. ↑ indicates higher values are better, ↓ indicates lower values are better. The results in the first 2 columns are taken from [6]. *
highlights the results reproduced using the open-source code from the authors of [6].

Video Metric BundleTrack [5] BundleSDF [6] BundleTrack∗ BundleSDF∗ BundleSDF-async∗ BundleSDF-Lite Ours
ADD-S(%)↑ 91.68 96.1 91.24 95.83 91.78 93.03 95.34
ADD(%)↑ 36.60 91 47.98 89.66 66.38 78.66 85.88
CD(cm)↓ 1.88 0.47 - 0.13 0.55 0.76 0.20AP10

ATPF(s)↓ - - 0.27 1.55 0.26 0.39 0.23
ADD-S(%)↑ 91.45 96.18 94.14 96.01 95.47 93.34 96.92
ADD(%)↑ 41.28 91.76 84.53 90.91 89.32 81.05 93.78
CD(cm)↓ 129.18 0.56 - 0.10 0.13 0.65 0.06AP11

ATPF(s)↓ - - 0.28 1.46 0.26 0.38 0.23
ADD-S(%)↑ 90.79 97.06 95.42 96.98 96.51 93.87 96.77
ADD(%)↑ 50.82 94.76 88.09 94.53 92.32 83.34 93.35
CD(cm)↓ 2.47 0.59 - 0.04 0.09 0.74 0.06AP12

ATPF(s)↓ - - 0.29 1.40 0.28 0.41 0.25
ADD-S(%)↑ 90.68 96.16 95.65 96.19 95.96 92.66 96.46
ADD(%)↑ 49.03 92.73 89.95 92.77 92.11 80.14 92.90
CD(cm)↓ 2.77 0.63 - 0.03 0.05 0.78 0.06AP13

ATPF(s)↓ - - 0.28 1.40 0.29 0.41 0.24
ADD-S(%)↑ 96.02 96.01 96.09 97.09 96.89 96.50 95.84
ADD(%)↑ 90.30 91.25 91.07 94.65 94.11 92.23 91.56
CD(cm)↓ 72.40 1.28 - 0.03 0.05 0.71 0.07AP14

ATPF(s)↓ - - 0.29 1.46 0.29 0.41 0.25
ADD-S(%)↑ 94.94 95.05 93.01 95.28 93.79 93.31 94.29
ADD(%)↑ 87.45 88.92 75.64 89.48 83.75 83.78 84.55
CD(cm)↓ 0.97 0.56 - 0.13 0.29 0.57 0.33MPM10

ATPF(s)↓ - - 0.29 2.39 0.29 0.44 0.23
ADD-S(%)↑ 89.94 96.2 96.06 96.19 96.53 94.75 96.09
ADD(%)↑ 53.20 91.51 91.07 91.51 92.33 88.44 91.91
CD(cm)↓ 88.97 0.49 - 0.09 0.09 0.53 0.12MPM11

ATPF(s)↓ - - 0.28 2.17 0.28 0.44 0.27
ADD-S(%)↑ 95.66 96.98 97.88 96.17 97.18 80.20 97.76
ADD(%)↑ 90.96 93.13 95.12 91.36 93.64 60.98 95.48
CD(cm)↓ 121.33 0.46 - 0.08 0.06 1.30 0.07MPM12

ATPF(s)↓ - - 0.34 1.93 0.33 0.49 0.22
ADD-S(%)↑ 89.42 95.8 85.37 74.70 65.79 54.19 88.00
ADD(%)↑ 38.78 90.62 32.03 51.91 26.39 27.51 32.50
CD(cm)↓ 81.39 0.57 - 0.90 1.67 0.92 2.06MPM13

ATPF(s)↓ - - 0.27 1.83 0.27 0.36 0.25
ADD-S(%)↑ 95.49 97.33 95.49 97.19 95.44 96.63 95.55
ADD(%)↑ 90.16 94.52 88.02 94.18 87.75 92.43 88.88
CD(cm)↓ 94.99 0.47 - 0.07 0.30 0.50 0.24MPM14

ATPF(s)↓ - - 0.30 2.41 0.30 0.44 0.59
ADD-S(%)↑ 94.44 97.27 94.54 97.07 94.40 95.17 94.55
ADD(%)↑ 84.64 94.39 78.34 93.82 79.13 86.53 78.23
CD(cm)↓ 75.83 0.46 - 0.12 0.58 0.60 0.63SB11

ATPF(s)↓ - - 0.23 2.18 0.23 0.37 0.59
ADD-S(%)↑ 95.66 97.67 97.28 97.71 97.20 96.99 97.08
ADD(%)↑ 85.47 95.24 92.68 95.31 92.90 92.09 92.30
CD(cm)↓ 2.49 0.47 - 0.08 0.16 0.75 0.17SB13

ATPF(s)↓ - - 0.25 1.82 0.25 0.39 0.22
ADD-S(%)↑ 84.94 96.9 89.36 96.87 89.39 87.44 91.31
ADD(%)↑ 59.41 94.24 56.13 94.19 58.27 57.03 75.05
CD(cm)↓ 2.04 0.44 - 0.08 1.43 0.91 0.77SM1

ATPF(s)↓ - - 0.33 5.25 0.34 0.74 0.27
ADD-S(%)↑ 92.39 96.52 93.96 94.87 92.80 89.85 95.07
ADD(%)↑ 66.01 92.62 77.75 89.56 80.65 77.25 84.34
CD(cm)↓ 52.05 0.57 - 0.15 0.42 0.75 0.41Mean

ATPF(s)↓ - - 0.29 2.10 0.28 0.44 0.24



Table 2. Comparison of ADD-S, ADD, and CD metrics, along with the Average Time Per Frame, across different methods on the YCBInEOAT
dataset. ↑ indicates higher values are better, ↓ indicates lower values are better. The results in the first 2 columns are taken from [6]. *
highlights the results reproduced using the open-source code from the authors of [6].

Object Metric BundleTrack [5] BundleSDF [6] BundleTrack∗ BundleSDF∗ BundleSDF-async∗ BundleSDF-Lite Ours
ADD-S(%)↑ 90.2 90.63 89.41 90.23 91.78 90.52 95.33
ADD(%)↑ 85.08 85.37 63.24 80.29 66.38 81.99 91.3
CD(cm)↓ 1.36 0.76 - 0.53 0.55 0.21 0.1cracker box

ATPF(s)↓ - - 0.20 0.59 0.20 0.21 0.18
ADD-S(%)↑ 95.22 94.28 82.45 93.48 95.47 92.18 93.81
ADD(%)↑ 89.34 87.46 61.83 85.48 89.32 82.56 85.78
CD(cm)↓ 1.31 0.53 - 0.44 0.13 0.16 0.25bleach cleanser

ATPF(s)↓ - - 0.21 1.01 0.22 0.23 0.21
ADD-S(%)↑ 90.68 93.81 81.42 96.58 96.51 89.48 96.21
ADD(%)↑ 85.49 88.62 51.91 92.08 92.32 82.33 92.34
CD(cm)↓ 2.25 0.46 - 0.23 0.09 0.22 0.07sugar box

ATPF(s)↓ - - 0.20 0.70 0.22 0.26 0.21
ADD-S(%)↑ 95.24 95.24 71.61 79.19 95.96 94.84 94.26
ADD(%)↑ 85.78 83.1 41.36 57.3 92.11 82.45 86.14
CD(cm)↓ 7.36 3.57 - 1.16 0.05 0.35 0.28tomato soup can

ATPF(s)↓ - - 0.20 1.07 0.20 0.25 0.23
ADD-S(%)↑ 95.84 95.75 88.53 95.85 96.89 95.07 95.94
ADD(%)↑ 92.15 89.87 71.92 90.15 94.11 86.95 92.22
CD(cm)↓ 1.76 0.45 - 0.31 0.05 0.18 0.12mustard bottle

ATPF(s)↓ - - 0.21 0.74 0.22 0.26 0.25
ADD-S(%)↑ 93.01 92.77 81.17 92.82 92.79 92.66 93.79
ADD(%)↑ 87.26 86.95 57.91 84.28 83.75 83.41 87.83
CD(cm)↓ 2.81 1.16 - 0.53 0.29 0.25 0.15Mean

ATPF(s)↓ - - 0.21 0.82 0.21 0.24 0.22
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