
AM-Adapter: Appearance Matching Adapter
for Exemplar-based Semantic Image Synthesis in-the-Wild

Supplementary Material

In this material, Section A describes the implementation
details of our experiments, while Section B elaborates the
details of the evaluation process. Section C presents ad-
ditional results, including qualitative, quantitative analyses
and user studies. Finally, in Section D, we demonstrate the
versatility of our work through various applications. Sec-
tion E discusses the limitations of our work and provides a
broader discussion.

A. Implementation Details
For all experiment, we used a single NVIDIA A6000 GPU.
For training, we utilized 7K exemplar-target segmentation
pairs from the BDD100K [32] dataset. During the first stage
training, ControlNeXt [23] was trained with a batch size of
2 and a resolution of 512, using a learning rate of 1e − 5,
and the training process lasted approximately 9 hours. In
the second stage, AM-Adapter was trained with a batch size
of 1 and a resolution of 512 for 25, 000 steps, taking around
14 hours. We used the same learning rate 1e − 5, with the
AdamW [15] optimizer applied in both stages. We utilized
the DDIM [26] sampler for both inversion and sampling,
with the number of timesteps T set to 20. The Augmented
Self-Attention is applied across all self-attention layers of
the UNet, denoted as L ∈ [0, 9], while the AM-Adapter is
applied to all self-attention layers except for the first block
of the encoder, represented as L ∈ [1, 9]. This approach
avoids the structural conflict and prevents interference be-
tween the two effects, as the cross-normalized features from
ControlNeXt [23] are added after the first downsampling
block. We set the guidance scale to s = 7.5 for both text
and matching guidance.

B. Evaluation
B.1. Dataset
Prior works in Semantic Image Synthesis [10, 11, 18, 21,
23, 29, 33, 34] and Exemplar-based Semantic Image Syn-
thesis [6, 12, 24, 30, 31] have used different datasets for
evaluation. Commonly, prior methods [13] assemble im-
age dataset from the web and hand annotated the condition
such as segmentation, sketch or edge drawing. Since no
established benchmark exists for Exemplar-based Semantic
Image Synthesis, we constructed an evaluation dataset tai-
lored to our task, featuring complex driving scenes with di-
verse structure-appearance pairs. Specifically, we evaluated
our method on two commonly used driving scene datasets:
BDD100K [32] and Cityscapes [4]. To demonstrate gener-

alization ability, we additionally evaluated our method on
the NYUv2 [20] dataset, which is an indoor dataset. For
evaluation, we randomly selected 300 segmentation maps
each from BDD100K Cityscapes and NYUv2, resulting in
a total of 900 segmentation maps.

Our goal is to achieve semantic-aware local appearance
transfer in complex scenarios, which selectively transfers
exemplar’s local appearance to target segmentation under
significant geometric gap between the exemplar’s and tar-
get’s layouts, and with multiple instances. As part of this
effort, we propose a retrieval technique that automatically
selects exemplars while maximizing matchable regions, as
discussed in Section 3.6 of the main paper. Therefore,
the exemplar segmentation-image pairs in our evaluation
dataset consist of two types: 300 pairs retrieved using 300
target segmentation maps and 300 pairs randomly selected.

B.2. Evaluation Metrics

For quantitative evaluation, we categorized our analysis
into three perspectives: structure consistency, appearance
preservation and image quality. Following previous stud-
ies [13, 22], we adopted Self-Sim. [28] metrics to evaluate
structure consistency. To evaluate appearance preservation,
following prior works [19], we computed CLIP image simi-
larity [25], denoted as ICLIP. For image quality assessment,
we measured FID [5]. Table 1 of the main paper presents
the results for these metrics.

While our AM-Adapter outperforms other methods
across all metrics, as noted in [3, 8, 9, 14, 27], we empha-
size that these metrics do not fully align with human prefer-
ences. This is because they extract either global features or
small local features from the generated images and condi-
tions (segmentation maps and exemplar RGB images) and
calculate distances between these features. To address this
limitation, we conducted the user study for a more reliable
evaluation.

Furthermore, we evaluated three complementary metrics
to address this limitation: object-wise local CLIP similarity,
IDINO and DINO [cls] loss. The object-wise local CLIP
similarity is computed by categorizing objects and measur-
ing the CLIP image similarity for each category individu-
ally. Since meaningful comparison requires the presence of
corresponding objects in both the exemplar and result im-
ages, we restrict our analysis to the top 10 most frequently
occurring object classes in the BDD100K [32] dataset. De-
spite this constraint, our method consistently demonstrates
superior robustness across all classes compared to other



Figure 1. Object-wise CLIP Image Similarity per Class.
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Figure 2. User Study on Ablations.

baseline models. Additionally, we employ DINO, which
is known for its supervised learning capability and its abil-
ity to capture fine-grained local details, to measure image
similarity. Our approach achieves the best performance in
this evaluation. Table 1 of the main paper demonstrates the
results for IDINO and DINO [cls] loss, and Figure 1 shows
the results of object-wise local CLIP similarity across cate-
gories in BDD100K dataset.

B.3. User Study Details
Figure 6 presents example questions from the user study.
We conducted a human evaluation study comparing AM-
Adapter and previous works [1, 13, 17, 31, 33] in terms of
structure consistency, appearance preservation, and image
quality. For structure consistency, we provided the target
segmentation map and the generated images from differ-
ent methods, and users were asked to select which method
better represents the semantic structure in the target seg-
mentation map. For appearance preservation, we provided
the exemplar image and the generated images from differ-
ent methods, and participants were asked to choose which
generated image better captures the appearance in the ex-
emplar. Lastly, participants were shown only the generated
images and asked to select the one that achieved the high-
est image quality. A total of 45 participants responded to
18 questions. For a fair comparison, we sampled generated
images from a large pool sharing the same exemplar image
for three different methods to ensure intra-rater reliability.
Figure 9 in the main paper summarizes the results, showing
that our model outperforms others across all three criteria.

Figure 7 shows example questions from the user study

comparing AM-Adapter with its individual components.
The evaluation was conducted using the same criteria of
structure preservation, appearance preservation and image
quality to assess the role of each component in the over-
all performance. A total of 33 participants responded to 24
questions. For a fair comparison, generated images were
samples from a shared pool associated with the same ex-
emplar image and same target segmentation map across all
methods. The results, summarized in Figure 2, show that
AM-Adapter achieves a balanced and consistently high per-
formance across all three criteria.

C. Additional Results

C.1. Qualitative Results
Figure 8 shows additional qualitative results of AM-
Adapter. We present more qualitative results comparing
our method with others, including ControlNet [33] + IP-
Adapter [31], FreeControl [17], Cross-Image Attention [1],
and Ctrl-X [13], in Figure 9, which further demonstrates the
effectiveness of our method.

C.2. Ablation Study Analysis
Table 2 in the main paper, Figure 3, Figure 4 and Table 1 in
Appendix summarize the following ablation study.
MasaCtrl vs. DreamMatcher vs. Augmented Self-
Attention. As shown in Figure 3 and Table 2, we conducted
a comparative analysis of the Augmented Self-Attention
against two representative hand-crafted attention control
methods, MasaCtrl [2] and DreamMatcher [19], which fo-
cus on implicit matching within self-attention mechanisms.
MasaCtrl replaces the key and value of the synthesized tar-
get image with those of the exemplar image, while Dream-
Matcher enhances implicit matching by leveraging diffu-
sion features for improved correspondence.

MasaCtrl heavily relies on implicit matching in the self-
attention module, often resulting in inaccurate appearance
transfers to semantically misaligned regions, thereby dis-
rupting the target structure that aligns with the structural
conditions. Furthermore, key-value replacement cannot
generate new elements that are absent in the exemplar, as
it discards the original keys and values from the target and
replaces them with those from the exemplar. This limi-
tation causes key-value replacement (MasaCtrl) to exhibit
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Figure 3. Ablation Study on Individual Components: (a) ControlNeXt [23] + MasaCtrl [2], (b) ControlNeXt [23] + DreamMatcher [19],
(c) ControlNeXt [23] + Augmented Self-Attention, (d) (c) + w/ Fine-tuning, (e) (c) + Categorical Matching Cost, (f) AM-Adapter (Ours).



high ICLIP and IDINO and low DINO [cls] loss, as it dis-
cards the original key-value pairs of the target and copies
and pastes the exemplar’s appearance into the target image
based on incorrect matching. This is further demonstrated
by the Self-Sim. [28] of MasaCtrl in Table 2 and the struc-
tural consistency results from the user study Figure 2, which
show that key-value replacement disrupts the structural con-
sistency between generated images and the given semantic
conditions. Notably, the metric of exemplar image in Ta-
ble 2 reflects cases where the same appearance exemplar is
used, which naturally leads to very high ICLIP scores due to
the identical appearance. Similarly, MasaCtrl achieves high
scores even when matching fails, as it transfers all appear-
ance information from the exemplar to the target.

In contrast, as demonstrated in Figure 3 and Table 2,
DreamMatcher better preserves the target structure by lever-
aging improved semantic matching and using intermediate
diffusion features to align the exemplar’s appearance with
the target image. However, its appearance preservation is
highly dependent on the exemplar image, as relying solely
on hand-crafted matching with diffusion features is insuf-
ficient for establishing accurate correspondence in content-
rich images, such as driving scenes or indoor scenes, which
require precise matching.

As a result, to achieve our goal of accurate transfer in
complex scenes, we adopt Augmented Self-Attention as our
baseline, which is outlined in Section 3.3 of the main pa-
per. As shown in Figure 3 and Table 2, Augmented Self-
Attention selectively incorporates keys and values from
both the exemplar and the target, effectively preserving the
desired target structure while transferring the exemplar’s
local appearance. Due to this selectivity, ICLIP is lower
compared to key-value replacement, which indiscriminately
transfers the entire appearance information from the ex-
emplar. However, Augmented Self-Attention demonstrates
a superior human evaluation score compared to MasaC-
trl [2] and DreamMatcher [19], indicating that it concur-
rently achieves appearance transfer and structural consis-
tency.
Impact of Fine-tuning. Nevertheless, as discussed in Sec-
tion 3.3 in the main paper, relying solely on the implicit
matching of the Augmented Self-Attention still leads to the
mismatches. The most straightforward approach to address
this issue is fine-tuning the model. However, as shown in
Figure 3 (c) and (d) and discussed in Section 4.3, it is shown
that fine-tuning degrades detailed appearance preservation,
as it requires learning both generation and matching simul-
taneously, which leads to unstable training and overfitting.
This is further demonstrated in the (V) in Table 2, (d) in
Figure 3.
Categorical Matching Cost vs. Learnable Matching
Cost (AM-Adapter). To concurrently achieve matching
and generation, we refine the implicit matching with se-

mantic awareness using segmentation maps in a data-driven
manner, rather than fine-tuning the entire model. In Sec-
tion 3.4 of the main paper, we compare categorical match-
ing cost with AM-Adapter. (e) and (f) in Figure 3 further
demonstrate the effectiveness of AM-Adapter compared to
categorical matching cost. The algorithm of overall AM-
Adapter training is available in Algorithm 1.

Inference. Figure 4 and Table 1 illustrate the effects of our
proposed retrieval technique and matching guidance during
inference. (a) represents a randomly selected exemplar im-
age, (b) represents a retrieved exemplar image, and (c) is
the target segmentation map with desired structure. (d) and
(I) display the results when a random exemplar image is
used as input without retrieval. In contrast, (e) and (II) uti-
lize an exemplar image that is structurally most similar to
the target condition, resulting in higher appearance preser-
vation compared to (d). Notably, this retrieval-based ap-
proach results in a significant increase in ICLIP scores, in-
creasing the matchable regions and transferring more ap-
pearance information from the exemplar. Finally, (f) and
(III) show the results of applying matching guidance using
classifier-free guidance [7], highlighting the effectiveness
of matching guidance in achieving accurate results. Fig-
ure 11 presents the detailed mechanism of how the retrieval
process operates and Figure 12 illustrates retrieved exem-
plar images from target segmentation maps obtained by our
retrieval technique. The algorithm of overall AM-Adapter
inference is available in Algorithm 2.

C.3. Additional Analysis

Figure 5 presents the additional examples of attention visu-
alizations before and after applying the AM-Adapter, fur-
ther highlighting the effectiveness of our model. The green
markers indicate objects that are absent in the exemplar,
while the orange markers denote objects that are present in
the exemplar.

For instance, in the first row, the green marker highlights
a query point corresponding to a ‘building’ that is absent
in the exemplar. After applying the AM-Adapter, the atten-
tion associated with unrelated regions is significantly sup-
pressed. The orange marker, on the other hand, indicates a
query point on the top of a ‘trailer’. After applying AM-
Adapter, the attention becomes more localized, concentrat-
ing more effectively on the relevant regions. In the second
row, the green marker represents a query point correspond-
ing to a ‘truck’ that does not appear in the exemplar. After
the AM-Adapter is applied, mismatches in the attention are
reduced, further aligning the attention with the target struc-
ture. Similarly, the orange marker identifies a query point
near the right rear light of a ‘vehicle’. With the adapter
applied, the attention becomes more localized, exhibiting
enhanced focus on the intended area.



Figure 4. Ablation on Inference: (a) random exemplar image, (b) retrieved exemplar image, (c) target segmentation map with desired
structure, results generated (d) without retrieval or matching guidance, (e) with retrieval but without matching guidance, and (f) with both
retrieval and matching guidance.

(c) Attention w/o Adapter(a) Exemplar Image (e) Generated Image(b) Target Segmentation (d) Attention w/ Adapter (e) Attention w/o Adapter (f) Attention w/ Adapter

Figure 5. Additional Attention Visualization: (a) Exemplar image with desired appearance, (b) target segmentation with desired structure,
and (g) generated image. Green and orange markers in (b) indicate query points. (c) and (d) show the augmented self-attention map
QY

t (KX
t )T from the green marker, before and after applying AM-Adapter, respectively. (e) and (f) show the augmented self-attention map

QY
t (KX

t )T from the orange marker, before and after applying AM-Adapter, respectively.

Component Self-Sim. ↓ ICLIP ↑ FID↓
(I) AM-Adapter 0.043 0.741 79.05
(II) (I) + Retrieval 0.041 0.814 77.15
(III) (II) + Matching Guidance (Ours) 0.041 0.819 75.89

Table 1. Ablation Study on Inference.

C.4. Generalization

Our method is not limited to driving scenes. To demonstrate
its generalizability across domains, we additionally evalu-
ated it on NYUv2 [20], an indoor dataset with 40 classes, as
shown in Figure 10.

D. Applications

D.1. Controllable One-to-One Appearance Trans-
fer with User Guidance

As illustrated in Figure 13, the AM-Adapter can enforce
one-to-one mapping within a many-to-many setting, allow-
ing precise control over appearance transfer. In the user-
defined exemplar segmentation, the white regions indicate
source vehicles whose appearance is explicitly designated
for transfer. In the user-defined target segmentation, the
white regions represent destination objects that will receive
the transferred appearance. As a result, the appearance of
the selected source vehicle in the exemplar is accurately
mapped to the corresponding destination vehicle in the tar-
get segmentation.



D.2. Segmentation-Guided Image Editing
Figure 14 and Figure 15 illustrate the results of AM-Adapter
to segmentation-based editing applications, specificallly ob-
ject removal and addition, respectively. These results show-
case the versatility of AM-Adapter in generating high-
quality images while adhering to modified semantic struc-
tures.

In Figure 14, we demonstrate segmentation-based edit-
ing by removing objects from the segmentation maps. (a)
represents the original segmentation map, while (b) shows
the generated image by AM-Adapter following the target
structure of (a). (c) and (e) are edited segmentation maps
derived from (a) with specific modifications, such as mod-
ifying or removing the colors of specific instances within
the map to adjust the semantic information. For example,
in the first row, (c) removes the vehicles in the center, while
(e) removes the buildings on the left. In the second row,
(c) eliminates the traffic lights and trees, while (e) removes
the person in the enter. (d) is the generated image by AM-
Adapter following the target structure of (c), while (f) is the
generated image by AM-Adapter following the target struc-
ture of (e).

Figure 15, in contrast, showcases segmentation-based
editing through object addition in the segmentation maps.
(a) depicts the edited segmentation maps from Figure 14
where specific objects were removed, forming the basis for
subsequent augmentation, and (b) presents the images gen-
erated based on (a). (c) and (e) illustrate segmentation maps
augmented by introducing additional semantic instances to
enrich the scene. For example, in the first row, (c) intro-
duces pedestrians and trees into the left side of the scene,
while (e) adds buildings to the background. In the second
row, (c) incorporates an additional vehicle into the scene,
while (e) includes a pedestrian next to the existing one. The
resulting images, generated based on these augmented seg-
mentation maps, are depicted in (d) and (f), highlighting the
model’s capability to seamlessly integrate new objects into
the scene while preserving global consistency.

The results shown in Figure 14 and Figure 15 highlight
the versatility of AM-Adapter in addressing diverse seman-
tic editing tasks, including object removal and addition.
The method effectively synthesizes images that reflect both
the structural modifications and the appearance of exem-
plar, showcasing its potential for downstream applications
such as semantic image editing [16]. These findings further
validate AM-Adapter’s contribution to advancing exemplar-
based semantic image synthesis.

D.3. Image-to-Image Translation
In Figure 16, we present the results of AM-Adapter in
image-to-image translation. The first and third rows show-
case exemplar images representing a diverse range of
weather conditions and times of day. The second and fourth

rows illustrate the generated results, where the detailed ap-
pearance of the exemplar image is seamlessly transferred
into the desired structure of the given target segmentation
map. Notably, even within the same category, subtle vari-
ations exist. For instance, sunny conditions can vary be-
tween partly cloudy and completely clear skies, the sky can
display different hues during sunset, and night scenes can
have varying levels of brightness. Describing such nuanced
differences using textual descriptions is inherently challeng-
ing. By using exemplar images to replace ambiguous tex-
tual descriptions, AM-Adapter can translate the appearance
of the given image into the user-intended local exemplar ap-
pearance, with segmentation maps serving as anchors.

D.4. Appearance-Consistent Consecutive Video
Frame Generation

As illustrated in Figure 17, AM-Adapter effectively gener-
ates appearance-consistent consecutive video frames when
provided with the target segmentation maps for each frame
and a single exemplar image. The first row depicts the target
segmentation maps of consecutive frames provided by the
BDD100K [32] dataset, arranged in temporal order from
left to right, while the second row shows the correspond-
ing generated images that reflect the structure of each target
map.

It is critical to note that, as mentioned in Section 3.5,
our method was trained using pairs of images generated
by applying random augmentations, such as flipping and
cropping, to a single anchor image. This training process
was designed to facilitate local appearance transfer, with-
out explicitly considering inter-frame continuity or consis-
tency. Nevertheless, our method effectively transfers the
appearance of the exemplar image, resulting in consecutive
frames that maintain appearance consistency. These results
indicate that the performance of our model could be further
refined by fine-tuning with video-image and segmentation
pairs explicitly designed to ensure temporal consistency.

E. Limitation and Discussion
Dependency on Pretraining. As discussed in Section 3.5,
our training process is divided into two stages: Control-
NeXt [23] for generation and AM-Adapter for matching.
In the first stage, ControlNeXt learns to generate realis-
tic images using segmentation maps as conditions. How-
ever, if ControlNeXt fails to adequately learn the generative
capabilities or fully grasp the semantic information from
the segmentation maps, it can negatively affect the perfor-
mance of the learnable matching cost in AM-Adapter, since
it is learned in a data-driven manner using segmentation-
image pairs. This underscores the importance of robust pre-
training for ControlNeXt.
Limited Temporal Consistency Under Large Scene
Changes. In Figure 17 and Section D.4, we demonstrated



our method’s ability to generate appearance-consistent
frames using an exemplar image and the target segmenta-
tion maps of consecutive video frames as input. However,
when there are substantial scene changes (e.g., large camera
motion), the consistency between generated frames dimin-
ishes.

As mentioned in Section D.4, this limitation arises from
our training approach, which uses pairs of randomly aug-
mented images derived from a single anchor image. While
this method effectively accounts for spatial differences
within a pair of frames, it does not address temporal con-
sistency across frames, resulting in temporally inconsistent
images during large scene transitions. To overcome this
limitation, fine-tuning the adapter with video data that ex-
plicitly incorporates temporal consistency during training
could enhance its ability to generate consistent frames, even
under significant scene variations.



Figure 6. An Example of a User Study Comparing AM-Adapter with Previous Methods. For structure preservation, we provide
the target segmentation map and generated images from different methods, ControlNet [33] + IP-Adapter [31], FreeControl [17], Cross-
Image Attention [1], Ctrl-X [13] and AM-Adapter. For appearance preservation, we provide the exemplar image and the generated images
from those methods. For image quality, we compare solely the generated images. For a fair comparison, we randomly select the sample
generated from exemplar-segmentation pairs from a large pool.

Figure 7. An Example of a User Study Comparing AM-Adapter with Ablation Studies. For structure preservation, we provide
the target segmentation map and generated images from different methods, key-value replacement (MasaCtrl [2]), DreamMatcher [19],
augmented self-attention, augmented self-attention w/ finetuning, augmented self-attention + categorical matching cost, and AM-Adapter.
For appearance preservation, we provide the exemplar image and the generated images from those methods. For image quality, we compare
solely the generated images. For a fair comparison, we randomly select the sample generated from exemplar-segmentation pairs from a
large pool.



Algorithm 1 Training AM-Adapter with Frozen ControlNeXt and Diffusion
Input: Exemplar and target latent maps zXt , zYt , segmentation maps SX , SY , ground-truth noise ϵ
Output: Trained AM-Adapter parameters ϕ

1: Freeze parameters of ControlNeXt and Diffusion
2: {QX

t ,KX
t , V X

t } ← ϵθ(z
X
t , c, t, SX)

3: {QY
t ,K

Y
t , V Y

t } ← ϵθ(z
Y
t , c, t, SY )

4: # Compute augmented self-attention
5: K

{Y,X}
t ← Concat(KY

t ,KX
t )

6: A
{Y,X}
t ← QY

t (K
{Y,X}
t )⊤√
d

7: AY→Y
t , AY→X

t ← A
{Y,X}
t

8: # Compute matching via ϕ
9: CY→X ← CategoricalMatching(SX , SY )

10: RY→X
t ← Concat(AY→X ,DownSample(CY→X))

11: OY→X ← ϕ(RY→X
t ) +AY→X

t

12: # Predict noise and compute loss
13: ϵ̂← ϵθ(z

Y
t , c, t, OY→X)

14: L ← ∥ϵ̂− ϵ∥2
15: Update ϕ to minimize L
16: return ϕ

Algorithm 2 Inference
Input: Exemplar initial latent noise map zXT , exemplar and target segmentation maps SX , SY , retrieval flag f
Output: Exemplar and target latent maps zX0 , zY0

1: if f = 1 then ▷ retrieval is enabled
2: SX ← Automatic Exemplar Retrieval(SY )
3: end if
4: zYT ∼ N (0, I)
5: for t = T, T − 1, ..., 1 do
6: ϵXθ , {QX

t ,KX
t , V X

t } ← ϵθ(z
X
t , c, t, SX)

7: zXt−1 ← Sample(zXt , ϵXθ )
8: ϵYθ , {QY

t ,K
Y
t , V Y

t } ← ϵθ(z
Y
t , c, t, SY )

9: RY→X
t ← Concat(AY→X

t ,DownSample(CY→X))
10: OY→X

t ← ϕ(RY→X
t ) +AY→X

t

11: ϵ̃ = ϵYθ (z
Y
t , c, t, OY→X

t )
12: zYt−1 ← Sample(zYt , ϵ̃)
13: end for
14: return zX0 , zY0
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Figure 8. Additional Qualitative Results of AM-Adapter. Visualization of results generated by AM-Adapter (Ours) across various
scenarios.
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Figure 9. Additional Qualitative Comparison on BDD100K [32] Dataset.



Exemplar Image Exemplar Image

C
o
n
tr

o
lN

et

+
IP

-A
d
ap

te
r

O
u
rs

C
tr

l-
X

C
ro

ss
 I

m
ag

e
F

re
eC

o
n
tr

o
l

T
ar

g
et

 S
eg

m
en

ta
ti

o
n

C
o
n
tr

o
lN

eX
t

Figure 10. Additional Qualitative Comparison on NYUv2 [20] Dataset.
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Figure 11. Details of the Retrieval-based Inference.
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Figure 12. Retrieval Examples. During inference, our retrieval technique selects the exemplar image that exhibits the highest structural
similarity to the target segmentation map.

User-defined Target Seg Generated ImageGenerated Image

Exemplar Image User-defined Exemplar Seg Exemplar Image User-defined Exemplar Seg

User-defined Target Seg

Figure 13. Application: Controllable One-to-One Matching with User Guidance. The AM-Adapter enforces one-to-one mapping in
a many-to-many setting, enabling controlled appearance transfer. The white regions in the exemplar and target segmentations indicate the
source and destination objects, respectively, ensuring accurate appearance mapping.



(a) (b) (c) (d) (e) (f)

Figure 14. Application: Object Removal by Segmentation-Based Image Editing. (a) Original target segmentation with desired struc-
ture, (b) generated image given the target segmentation map (a), (c) edited target segmentation map, (d) generated image given the target
segmentation map (c), (e) edited target segmentation map, (f) generated image given the target segmentation map (e).

(a) (b) (c) (d) (e) (f)

Figure 15. Application: Object Additon by Segmentation-Based Image Editing. (a) Edited target segmentation with desired structure,
(b) generated image given the target segmentation map (a), (c) edited target segmentation map, (d) generated image given the target
segmentation map (c), (e) edited target segmentation map, (f) generated image given the target segmentation map (e).
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Figure 16. Application: Image-to-Image Translation. The first and third row represent exemplar images reflecting various weather
conditions and times of day, including various categories such as cloudy days, sunset hours, sunny, night, and rainy conditions. The second
and fourth rows depict the resulting images that incorporate the structure of the target segmentation along with each exemplar image.
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Figure 17. Application: Appearance-Consistent Consecutive Video Frame Generation. The target segmentation maps in the first row
are consecutive frames provided by the BDD100K [32] dataset. The second row displays the generated image results corresponding to
each target segmentation maps. The frames are arranged sequentially from left to right.
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