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A. Method Details
A.1. Acoustic Beam Tracing Algorithm

Figure 1. Acoustic beam tracing: in acoustic beam tracing the
source and listener are considered as two point, the sound is prop-
agate via a cone-shape beam in space. Acoustic beam tracing han-
dles reflection the same as ray tracing does. The key difference is
that acoustic beam tracing enumerate a reflection path if the lis-
tener is contatined in the beam volume but not necessarily being
hitted by the sampled ray

Given the source location xa and listener location xb, we
adopt acoustic beam tracing [2, 4, 7, 14] to sample specu-
lar beams in a source-to-listener manner. First we cast Nd

beams from the source, using a Fibonacci lattice [3] to ap-
proximate uniform coverage of directions. A small apex
angle 2φmax is selected to ensure the cone-shape beams re-
main disjoint. Next, each beam’s center ray intersects with
room geometry to find reflection points (e.g. via Open3D
[17]), and after each reflection, we check if the reflected
beam can hit the listener. To determine whether a reflected
beam at j-th reflection point xj (with out-going direction
dj) reaches the listener before hitting another surface, we
check if the listener is within the reflected cone (as show in

Algorithm 1: Acoustic Beam Tracing
Input: Source xa, Listener xb, GeometryM
Output: Specular paths {x̃k}Nk=1

for i = 1 to Nd do
xi,0←xa; li,0←0;
di,0← SampleFib(Nd, i)

end
ANS←{}
if IsVisible(xa, xb) then

ANS.add(∅) // direct path
end
for j = 1 to MAXdepth do

for i = 1 to Nd do
[xi,j , z] = HitPoint(M,xi,j−1,di,j−1)

di,j = di,j−1 − 2 (z⊤di,j−1) z
li,j = li,j−1 + ∥xi,j − xi,j−1∥
if BeamHit(xb, xi,j , di,j , li,j) then

ANS.add
(
[xi,1,xi,2, . . . ,xi,j ]

)
end

end
end
return ANS

Figure 1). Denote lj as the distance traveled by reaching
xj , and αj as the angle between dj and the line from xj to
xb and φj as the sampled half-apex angle:

φj = arctan

(
∥xb − xj∥ sinα

∥xb − xj∥ cosα+ lj

)
. (1)

The listener is considered “hit” if α is acute, φj < φmax,
and xj is visible by xb. In addition, the time-of-arrival is
by:

toaj =
∥xb − xj∥ sinα
vsound · sinφj

. (2)

Algorithm 1 summarizes our beam-tracing procedure.

A.2. Local Variance Derivation
As shown in Figure 2, consider a beam traveling distance
l before hitting the surface at x, with half-apex angle φ
and local surface normal z. Let θ be the angle between
the reflected direction d and z. In a local coordinate system
whose axes are {t1, t2, z}, where we requires t1 aligns with
the projection of d in the tangent surface, the beam’s cross-
section at distance l is approximately an ellipse with semi-
major and semi-minor axes proportional to l sinφ, modu-
lated by θ. A simple way to encode this elliptical patch is to



Room Floor Area Nbounce Nbasis LRIR Tinference Ttracing Tres Ttrain Nparams

HAA-Classroom ∼56m2 6 2.3K 2.00s 66.0ms 30.4ms 11.2ms 0.59h 26.4M
HAA-Complex ∼106m2 6 5.1K 2.00s 69.6ms 32.5ms 11.5ms 1.04h 26.4M
HAA-Dampened ∼25m2 2 1.1K 2.00s 26.8ms 9.58ms 11.5ms 0.36h 26.4M
HAA-Hallway ∼28m2 6 1.7K 2.00s 67.6ms 29.0ms 11.2ms 1.86h 26.4M
RAF-Furnished ∼44m2 4 5.9K 0.32s 51.3ms 35.5ms 4.12ms 6.63h 19.5M
RAF-Empty ∼44m2 4 4.9K 0.32s 54.4ms 35.1ms 4.07ms 10.8h 19.5M

Table 1. Detailed computational breakdown across HAA and RAF scenes. Here, Nbounce denotes the number of reflections simulated per
beam, Nbasis is the basis points sampled as descributed in §A.3, LRIR is the RIR duration, and Nparams is the total number of trainable
parameters in our model. All RIR are sampled at 16kHz. Training times for RAF scenes are reported with 1% training data.

Figure 2. Local covariance derivation: as the traveling space l
increases, the region of the contact area expand linearly in terms
of radius. In addition, since the half-apex angle is assumed to be
small, the contact region is considered an ellipse, which motivates
use model the region information with a gaussian distribution.

use a diagonal covariance at local coordinate

Σlocal = diag
(
σ2
1 , σ

2
2 , 0

)
, (3)

where σ2
1 and σ2

2 grow with l sinφ, adjusted by cos θ. In the
case when φ is small:

σ2
1 ≈

(
l sinφ

)2
/ cos2θ, σ2

2 ≈
(
l sinφ

)2
/ cosθ.

These terms capture how the beam’s ellipse “stretches”
along t1 and t2. In world coordinates, the final covariance
Σ is simply

Σ = QΣlocal Q
⊤,

where Q = [ t1 t2 z ] rotates from local axes to world axes.

A.3. Basis Points Sampling
we sample the basis point in two steps, first we densely sam-
ple 100,000 points on the room geometry, then, we down-
sample them with voxel size 0.2m and use the median point
(closest to mean point) as the basis samples for vision fea-
tures, as shown in Figure 3, in this way, we ensures the
distances between samples are stable.

Figure 3. Visualization of surface basis samples for extracting
multi-view images features.

A.4. Hyperparameters
Following [15], we use a spherical Gaussian weighting
function with a sharpness parameter of 8 for source di-
rectional response. We decode the image feature using a
4-layer MLP and sample frequencies from 12 to 7800 Hz
with 16 logarithmically spaced samples, linearly interpolat-
ing the frequency response.

A.5. Optimization
We optimize the network using the Adam optimizer with a
fixed learning rate of 5×10−4 (and 1×10−4 for the residual
component). Our loss function is defined as:

L = LMAG + λpinkLpink + λdecayLdecay, (4)

where LMAG is a multi-scale log L1 loss, Lpink is the pink
noise supervision loss, and Ldecay is the decay loss pro-
posed by [9, 11]. We adopt a progressive training strategy,
starting with a reflection order N = 1 and increasing by 1
every 100 epochs until N = 6. During training, we sample
16,384 points from Fibonacci lattices for beam tracing, re-
ducing this to 8,192 points per RIR during inference. Train-
ing is performed with a batch size of 128.

A.6. Computational Cost
Training/Inference Time and Model Size. We measure
our model’s size and training/inference time against base-
line methods, as shown in Table 2. On the HAA Classroom



Figure 4. Performance comparison across training scales (from
0.01% to 100% of training data). In addition to the metrics re-
ported in the main paper, our model consistently outperforms the
baselines in terms of both EDT and Loudness.

dataset base setting, inference on a 2.0s, 16kHz RIR using
a single RTXA6000 takes 66ms. Our approach achieves
the fastest inference among existing physics-based methods
(i.e., DiffRIR and AVR).

Method Tinference Ttraining Size

DiffRIR 376 ms 3.55 h 34.4 K
AVR 100 ms 0.17 h 45.7 M
Ours 66 ms 0.59 h 26.4 M

Table 2. Training time, inference time, and model size comparison
on HAA Classroom (2.0s IR, 16kHz, same RTX A6000)

Scene-Level Breakdown. Table 1 decomposes the com-
putation cost across additional HAA and RAF scenes. For
each scene, we report the total inference time Tinference,
which includes beam-tracing (Ttracing), residual rendering
(Tres), and early-stage RIR rendering1. Inference time re-
mains below 70ms for all HAA rooms and below 55ms for
the RAF dataset, demonstrating that our model naturally ex-
tends with scene complexity. As an additional sanity check,
we also test our framework on a much larger scene—Gibson
Hennepin [16] (∼600m2; 69k points; 6 bounces), our model
costs 108ms per 8s, 16kHz RIR render.

B. Additional Results

B.1. Waveform Comparison
Figure 5 shows wave visualizations on the Hearing Any-
thing Anywhere dataset. All models were trained on only 12
data points. Our model significantly outperforms the base-
lines in preserving the wave structure, producing a wave
front that closely matches the ground truth in terms of peak
locations and magnitudes. Note that quantitative metrics
do not always capture these perceptual differences; some
methods may achieve low error values despite generating

1We do not include it in the comparison, as isolating it would require
caching the full beam trace for every source-listener pair, which is pro-
hibitively memory intensive.

distorted wave patterns. This comparison highlights the su-
perior capability of our approach in modeling acoustic dy-
namics in few-shot settings.

Figure 6 presents wave visualizations on the Real Acous-
tic Field dataset. Here, we compare three baseline models
trained on 1% of the data with our model trained on both 1%
and 0.1% of the data. Our results demonstrate that, in terms
of wave structure, our model achieves better peak align-
ment and peak magnitude than the baselines—even when
our model is trained on only 0.1% of the data. When trained
on 1% of the data, our method further outperforms the base-
lines.

B.2. Multi-scale Performance Comparison
Loudness and EDT Errors. Figure 4 extend the multi-
scale performance comparison in main paper by evluat-
ing on two more metrics, i.e., Loudness and EDT. The re-
sult shows that our model performs consistantly better than
baselines in all training data scale, which is aligned with our
observation in the main paper.

Initial Drop in T60 and Loudness Errors. We discov-
ered one of 9 RIRs in the 0.0003% subset was invalid
due to speaker failure, resulting in an almost silent record-
ing.Excluding it, the T60 and Loudness errorss (15.7% and
2.74dB, respectively) restore the expected monotonic de-
crease with larger dataset size. Only 0.27% of RAF data
were similarly affected; all other conclusions remain valid.

B.3. Full Metrics on the HAA Dataset
Table 4 present the complete evaluation metrics on the HAA
dataset, including Loudness, C50, EDT, and T60 across four
scenes. Our results show that our method outperforms state-
of-the-art baselines across almost all metrics, confirming
the trends observed in the main paper. The only exception
is the C50 metric and EDT metric in the Hallway scene,
where AV-NeRF performs particularly well, likely due to its
effective use of depth information in this constrained geom-
etry. These comprehensive results validate the robustness
and effectiveness of our model in diverse real-world acous-
tic environments.

Variant C50 EDT T60

65 views 1.98 80.1 15.2
20 views 2.01 80.9 15.7
10 views 2.13 97.9 15.2
5 views 2.12 97.2 15.3
ResNet18 1.96 89.4 15.3

Table 3. Ablation study on vision features. “65 views” denotes us-
ing 65 images for training; “20 views”, “10 views”, and “5 views”
denote reduced image sets. “ResNet18” indicates replacing the
DINO-V2 encoder with ResNet18.



Figure 5. Wave visualization on the Hearing Anything Anywhere dataset [15]. All models are trained on 12 data points. Our model sig-
nificantly outperforms all baselines in preserving the wave structure—producing the most faithful wave front with accurate peak locations
and magnitudes. Note that quantitative metrics do not always capture these perceptual details; some methods may have low error values
despite producing distorted wave patterns.

Figure 6. Wave visualization on the Real Acoustic Field dataset [1]. We show results from three baseline models trained on 1% of
the data alongside our model trained on 1% and 0.1% of the data. Our model exhibits better peak alignment and magnitude than baseline
methods—even when trained on only 0.1% of the data—and significantly outperforms all baselines when using the same amount of training
data.

B.4. Ablations on Vision Features

We investigate the impact of vision features by varying two
aspects: the number of multi-view images used for training
and the choice of the pretrained encoder. Both experiments
are conducted on the RAF Furnished scene using only 0.1%
of the training data.

Table 3 shows our vision feature saturation experiment,
we initially use 65 images to cover the entire scene, then
reduce the number to 20, 10, and 5 views (see top four rows
of Table 3). Reducing from 65 to 20 views incurs less than

a 1% drop in C50 and EDT, but further reduction from 20
to 10 views causes a marked performance decline, indicat-
ing that adequate view redundancy is essential for effective
visual guidance. Performance remains stable when further
reduced from 10 to 5 views, suggesting that with only 10
views the model nearly abandons visual feature learning and
relies primarily on acoustic cues.

We also replace the DINO-v2 [12] encoder with
ResNet18 [5], which results in a noticeable drop in EDT,
demonstrating that DINO-V2 is better suited for our model.



Method
Classroom Complex Room

Loudness C50 EDT T60 Loudness C50 EDT T60
(dB) ↓ (dB) ↓ (ms) ↓ (%) ↓ (dB) ↓ (dB) ↓ (ms) ↓ (%) ↓

NAF++ [10] 8.27 1.62 162.3 134.0 4.43 2.25 203.5 44.8
INRAS++ [13] 1.31 1.86 110.0 60.9 1.65 2.26 150.7 29.5
AV-NeRF[8] 1.51 1.43 77.8 50.0 2.01 1.88 107.9 36.6
AVR [6] 3.26 4.18 135.6 44.3 6.47 2.55 138.3 36.7
Diff-RIR [15] 2.24 2.42 139.7 39.7 1.75 2.23 129.5 18.5

Ours 0.99 1.02 55.5 24.3 0.98 1.44 86.5 10.8

Method
Dampened Room Hallway

Loudness C50 EDT T60 Loudness C50 EDT T60
(dB) ↓ (dB) ↓ (ms) ↓ (%) ↓ (dB) ↓ (dB) ↓ (ms) ↓ (%) ↓

NAF++ [10] 3.88 4.24 360.0 306.9 8.71 1.36 148.3 21.4
INRAS++ [13] 3.45 3.28 187.1 382.9 1.55 1.87 157.9 7.4
AV-NeRF [8] 2.40 3.05 242.1 107.9 1.26 1.03 89.9 9.5
AVR [6] 6.65 11.11 305.3 81.4 2.48 2.69 195.4 7.0
Diff-RIR [15] 1.87 1.56 153.0 44.9 1.32 3.13 188.1 6.8

Ours 1.11 1.45 139.0 31.9 0.85 1.15 96.5 6.3

Table 4. Result on the HAA [15] dataset, 2.0s, 16K sample rate

Notably, all vision ablations have minimal impact on T60,
indicating that vision features primarily contribute to mod-
eling early reflection rather than late reverberation.

B.5. Detailed Analysis on Model Components
Table 5 summarizes the impact of ablating individual com-
ponents of our model.
Differentiable Renderer. Replacing the learned residual
field with a position-independent on (Uni. Residual) in-
creases EDT error by more than 30%, and removing the
residual entirely (w/o Residual) raises C50, EDT, and T60
errors by over 70%. Substituting our beam-tracing method
with conventional ray tracing (Ray-Tracing) worsens all
three metrics by more than 40%. Using plain Fourier fea-
tures instead of integrated positional encoding (w/o IPE)
raises EDT by 26.3%.

Variant C50 EDT T60

Ours (full) 1.98 80.1 15.2
Uni. Residual 2.11 106.4 13.9
w/o Residual 3.82 142.8 49.0
w/o Vision 2.13 98.6 14.3
Ray-Tracing 4.27 146.9 21.9
w/o IPE 2.10 101.2 15.0

Table 5. Ablation study results. See text for details.

Vision Encoder. Replacing vision encoder by zero vectors
(w/o Vision) degrades EDT error by roughly 23%, confirm-

ing the importance of importance of visual information for
accurate acoustic estimation.

These results confirm that each design choice contributes
substantially to the overall performance.

B.6. Failure Cases
In Figure 7, we show a failure case where the source and lis-
tener are close. Accurately predicting the first-arrival spike
is challenging due to its narrow ROI, which limits gradient
flow. Nonetheless, our method still outperforms the base-
line.

Inaccurate Early EchosInaccurate Direct Sound

listener

source

orientation

Figure 7. We visualize two failure cases in our model on RAF-
Furnished Room with 1% training data.
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