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Supplementary Material

A. Model Details

Training. We initialize our model from Stable Diffu-
sion 2.1 [12] developed by Diffusers [15]. We apply full-
parameter fine-tuning to the diffusion model for 200k iter-
ations with a batch size of 32 and a learning rate of 10~°
using 32 NVIDIA H20 GPUs. To accommodate input im-
ages with the conditions, we expand the input channels of
the model’s first convolutional layer from 4 to 15, consist-
ing of 4 channels for image latents, 4 for skeleton latents,
6 for Pliicker embeddings, and 1 for a conditional mask.
Following the previous work [4], the conditional mask is
a binary indicator specifying whether an image serves as a
conditioning input or a target.

Sampling. Following Stable Diffusion 2.1 [12, 15], we use
DPM-Solver++ [1 1] with 24 sampling steps and a classifier-
free guidance scale of 3.0. Our sliding iterative denoising
strategy takes approximately 2 minutes to generate a sam-
ple sequence of length 48 when executed on a single A100
GPU. To improve efficiency, we parallelize the denoising
process across 8 A100 GPUs.

4D reconstrcution. We employ LongVolcap [17] to re-
construct the 4D human performances from the generated
multi-view videos. LongVolcap is an enhanced version of
4DGS [18] with the ability of effectively reconstructing
long volumetric videos with a temporal Gaussian hierarchy
representation. We initialize the 4D Gaussian primitives
with the coarse geometry obtained using the predicted fore-
ground masks and the space carving algorithm [9, 16]. We
then follow the same training and evaluation settings as in
the original paper [17] to reconstruct the 4D human perfor-
mances. Specifically, we optimize the model with the Adam
optimizer [8] with a learning rate of 1.6e~%, each model is
trained for 100k iterations for a sequence of 7200 frames,
which takes around 1 hour on a single NVIDIA RTX 4090
GPU.

B. Datasets Details

We conduct extensive processing on the original DNA-
Rendering [1] dataset to generate high-quality multi-view
videos along with additional masks and skeletons for train-
ing and evaluation. The processing pipeline includes cam-
era re-calibration, color correction matrices (CCMs) opti-
mization, foreground mask prediction, and human skeleton
estimation. We provide detailed descriptions of each step
below.

Camera calibration. We empirically found that the cam-
era parameters provided in the DNA-Rendering dataset are
not accurate enough for reconstruction verified with 3D
Gaussian Splatting (3DGS) [6]. In order to achieve pixel-
level accuracy, we first re-calibrated the camera parameters
using Colmap [13, 14]. We then optimized the color cor-
rection matrix for each camera to ensure consistent color
across different views.

Foreground mask prediction. There are only a few
(around 1/6) sequences in the DNA-Rendering dataset that
provide ground truth foreground masks. To obtain ac-
curate foreground masks, we leverage three state-of-the-
art background removal methods, namely RMBG-2.0 [19],
BiRefNet-Portrait [19], and BackgroundMattingV2 [10],
and combine their predictions using a voting mechanism
to fully leverage the strengths of each approach. Specifi-
cally, we found that RMBG-2.0 may incorrectly recognize
background objects as foreground, BiRefNet-Portrait may
segment small objects as background, and BackgroundMat-
tingV2 may produce inaccurate results for certain human
poses. We demonstrate the effectiveness of the voting strat-
egy in Fig. 1.
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Figure 1. Our voting strategy effectively leverages the strengths
of different background removal methods to produce robust fore-
ground masks.

Human skeleton estimation. Similar to the foreground
mask, only a few sequences have ground truth human skele-
tons. We thus adopt the state-of-the-art human skeleton es-
timation model, Sapiens [7], to predict the 2D human skele-
ton for each frame. We additionally adjust the transparency
of the skeleton colors based on the confidence scores of the
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Figure 2. More qualitative comparisons on DNA-Rendering [1] and ActorsHQ [5]. GPS-Gaussian uses 8 input views while all others
use 4 input views, and CAT4D' is our reproduced version. Our Diffuman4D consistently outperforms baselines with higher visual quality

and better spatio-temporal consistency.

skeleton, which helps to visualize and encode the uncer-
tainty of the skeleton estimation. After obtaining the 2D
human skeletons, we then triangulate them to obtain the
3D human skeleton sequence, which can be further used
for projection and evaluation.

We demonstrate the processed data samples in Fig. 3.
We plan to release the additionally processed data under the
DNA-Rendering open-source license to facilitate future re-
search within the community.

Dataset filtering. = DNA-Rendering [1] contains many
scenes involving human-object interactions, such as writ-
ing on a desk, playing guitar, or organizing items. Since the
diversity of objects is significantly greater than that of hu-
mans, training generative models typically requires exten-
sive object datasets (e.g., Objaverse [2, 3]). To address the
relatively limited scale of the DNA-Rendering dataset, we
employed the Llama Vision 3.2 model to classify all scenes
and filtered out those containing large objects to avoid po-
tential model collapse during training.

Nevertheless, we observe that even though the training
dataset does not include objects, our model successfully
generalizes to scenes featuring simple objects, such as the
basketball player shown in Fig. 4.

C. Additional Comparisons

More qualitative results. We provide additional compar-
isons with baselines in Fig. 2. Results show that our method
consistently outperforms the baselines in terms of visual
quality and fine details.

Diffusion generation vs. 4DGS rendering. Although our

Skeleton

Figure 3. High-quality foreground masks and human skeletons
predicted using state-of-the-art methods.

model already supports novel-view synthesis, we choose
to optimize a 4DGS model using LongVolcap [17] to en-
able real-time rendering. As shown in Fig. 4, our model
can generate high-fidelity human videos, but they still in-
evitably exhibit spatio-temporal inconsistencies. Recon-
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Figure 4. Qualitative comparisons between novel views generated by our model and those rendered from the 4DGS model reconstructed
using LongVolcap [17].

structing a 4DGS model further alleviates these inconsis-
tencies, though at the cost of reduced sharpness compared
to the originally generated images.
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