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A. Additional Implementation Details
Details of Router. We concatenated the image feature and
instruction token and used them as input to the router. To
align the dimension of the image feature with that of the in-
struction token, we first applied a pre-trained visual projec-
tor to the image feature. To more effectively extract contex-
tual information from the given instructions, we employed
a simple linguistic preprocessing technique, following [10].
Specifically, we applied Part-of-Speech (POS) tagging to
categorize key components, such as WH-words, nouns, and
verbs, while filtering out irrelevant terms. The filtered in-
structions were then processed through the tokenizer and
embedding function of a pre-trained model to extract text
tokens for the router. Note that this process was not applied
to the instruction tokens for the pre-trained large language
model. Finally, the projected image feature was concate-
nated with the filtered instruction token and used as input to
the router.

To activate an expert by considering both the given im-
age and instruction, we implemented the router consisting
of a single multi-head self-attention block followed by a
linear layer. We set the number of translation experts K
engaged in translation to two for all experiments, following
previous practices [36, 50]. We pruned experts by applying
a threshold to Et, removing experts whose corresponding
values in Et were smaller than 10−3. After identifying re-
dundant experts, we reinitialized those that had not been ac-
tivated across all tasks learned thus far (i.e., zero-valued en-
tries in the cumulative activation vector M1:t) using the pa-
rameters of the visual projector from the pre-trained model.
Details of the Language Instructions. The language in-
structions used as the default setting in our experiments are
presented in Table B. For question answering tasks, the in-
struction varies depending on the sample.
Measuring Accuracy of Generated Responses. For the
classification and question answering tasks, the perfor-
mance of the generated responses is evaluated in terms of
accuracy. To measure accuracy for classification tasks, we
compute the similarity in the embedding space between the
textual representations of the classification categories and
the generated responses. The predicted class is the cate-
gory with the highest similarity to the generated response;
if it matches the ground truth, the response is considered
correct. To compute textual similarity, we extract embed-
dings using the text encoder of CLIP [40], following [4].
For question answering tasks, the accuracy is determined by
whether the answer text appears in the generated response,

Table A. Results on a different task order.

Method Classification Captioning Question
Answering

Average ∆ (↑) Average ∆ (↑) Average ∆ (↑)
Vicuna

Zero-shot 64.41 0.00 75.00 0.00 51.62 0.00
Last

LwF [30] 70.78 +6.37 70.46 -4.54 57.18 +5.56
EWC [25] 47.57 -16.84 72.37 -2.63 52.42 +0.80
GMM [4] 60.62 -3.79 73.83 -1.17 54.93 +3.31
EProj [16] 59.26 -5.15 71.41 -3.59 58.97 +7.35
MoEAdapter [50] 66.19 +1.78 75.53 +0.53 47.60 -4.02
MVP (Ours) 86.68 +22.27 77.55 +2.55 70.93 +19.31

Avg
LwF [30] 62.88 -1.53 65.36 -9.64 52.72 +1.10
EWC [25] 47.43 -16.98 63.03 -11.97 40.43 -11.19
GMM [4] 46.76 -17.65 72.54 -2.46 45.89 -5.73
EProj [16] 47.24 -17.17 72.41 -2.59 45.54 -6.08
MoEAdapter [50] 67.84 +3.43 75.53 +0.53 51.91 +0.29
MVP (Ours) 81.67 +17.26 77.12 +2.12 60.87 +9.25

Transfer
LwF [30] 70.70 +6.29 63.21 -11.79 49.87 -1.75
EWC [25] 57.77 -6.64 61.92 -13.08 39.85 -11.77
GMM [4] 55.01 -9.40 72.43 -2.57 44.74 -6.88
EProj [16] 50.81 -13.60 72.67 -2.33 43.72 -7.90
MoEAdapter [50] 69.07 +4.66 75.92 +0.92 49.86 -1.76
MVP (Ours) 76.09 +11.68 77.13 +2.13 55.98 +4.36

following previous practices [7, 33].

B. Additional Experimental Results

Results on a Different Task Order. The task order used
in Tables 1 and 2 of the main paper follows the sequence
of ten classification tasks, four captioning tasks and four
question answering tasks. Since captioning and question
answering tasks do not have explicit classes, experiments
on different class orders are omitted. To evaluate the ro-
bustness of the proposed method to a different task order,
we conducted additional experiments. We randomly shuf-
fled the task order used in Table 1 of the main paper while
keeping all other implementation details the same. Table
A reports the experimental results of learning with a ran-
dom task order. Overall, the proposed method outperforms
other continual learning methods. Most competitors show
unsatisfactory performance for the three metrics compared
to Zero-Shot. Additionally, we report the task-specific per-
formance measured at each time step in Figure A. While
other continual learning methods exhibit large performance
variations depending on the type of tasks being learned, the
proposed method demonstrates robustness with respect to
the task order.
Analysis on Language Instructions. Additionally, to an-
alyze the robustness of the proposed instruction-grounded



Figure A. Results of training with a random task order, showing the performance of each task at each time step. The yellow horizontal line
represents the zero-shot performance of the pre-trained model. The gray area represents the time steps preceding training for specific tasks,
and the vertical line indicates the time step at which the corresponding task is learned. Best viewed in color.

visual projector when multiple textual instructions are pro-
vided per task, we conducted an additional experiment. We
generated ten language instructions using GPT-4o [1] for
image classification and captioning tasks. The generated
instructions for each task category are shown in the gener-
ated response in Table B. For tasks belonging to the cor-
responding category, one of the ten generated instructions
was randomly selected for each sample during training. The
experimental results are reported in Table C. The results
indicate that the proposed method exhibits robustness, as
its performance remains stable regardless of variations in
instructions, provided that the instructions maintain con-
textual consistency. Although an increase in the number

of instructions leads to a slight decline in the transfer per-
formance of the captioning and question answering tasks,
the performance measured in Last is comparable to those
achieved using the default instructions.
Analysis on Computational Cost. We analyzed the com-
putational cost of MVP by measuring the wall-clock time
and VRAM usage for the experiments in Table 1 of the
main paper. The results are summarized in Table D. Dur-
ing its main training phase, MVP requires 20 hours and
48 minutes, a negligible time overhead (1.08×) compared
to GMM. This efficiency stems from freezing the compu-
tationally expensive vision and language backbones of the
VLM while updating only the lightweight components: the



Table B. Language instructions for each type of task.

Task Classification
Default · What is this photo of?

Generated · Analyze the image to identify its most detailed category.
· The most detailed category should be determined based on the image’s visual features.
· Assign the image to the most detailed category by examining its characteristics.
· Determine which detailed category best fits the given image and identify it.
· Based on the primary subject, identify the detailed category of the image.
· The image should be assessed to determine the most detailed category.
· Identify the correct detailed category for the given image.
· Assign the image to its respective detailed category after carefully identifying its features.
· Give the image a detailed category by examining its characteristics.
· Given the image’s appearance, identify the appropriate detailed category.

Task Captioning
Default · Describe the given image with a short sentence

Generated · Describe the scene in detail by capturing its key visual elements, interactions, and overall atmosphere.
· The scene contains various elements, and it is essential to describe them clearly while maintaining a concise yet informative structure.
· Identify and describe the key subjects, their actions, and the interactions that define the scene comprehensively.
· A meaningful explanation should effectively describe the scene by considering its composition, significant events, and contextual details.
· The scene consists of numerous visual details, so it is important to describe them with clarity to ensure a precise understanding.
· Observe the scene carefully and describe the relationships between objects, people, and their interactions within the given context.
· Given the scene in the image, provide a well-structured statement that naturally describes its key features and dynamics.
· A well-formed caption must thoroughly describe the significant aspects of the scene, ensuring an accurate depiction of its core elements.
· As the scene unfolds dynamically, it is necessary to describe its core features with well-structured and concise sentences.
· Carefully examine the objects and contextual details in the scene to naturally describe its composition, interactions, and overall atmo-
sphere.

Task Question Answering
Default {Sample-wise Question}

Generated N/A

Table C. Results using generated instructions.

Method Classification Captioning Question
Answering

Average ∆ (↑) Average ∆ (↑) Average ∆ (↑)
Vicuna
Zero-shot 64.41 0.00 75.00 0.00 51.62 0.00

Last
MVP w/ Default 85.87 +21.46 77.75 +2.75 76.34 +24.72
MVP w/ Generated 84.99 +20.58 78.25 +3.25 75.77 +24.15

Avg
MVP w/ Default 83.28 +18.87 76.94 +1.94 57.68 +6.06
MVP w/ Generated 84.19 +19.78 74.44 -0.56 54.28 +2.66

Transfer
MVP w/ Default 78.45 +14.04 76.16 +1.16 50.89 -0.73
MVP w/ Generated 79.38 +14.97 72.64 -2.36 45.51 -6.11

router, the set of expert visual projectors, and the learn-
able pruning vector Et. In terms of memory, MVP requires
23.9 GB of VRAM, a marginal increase (1.16×) over GMM
from the use of multiple experts. Notably, the subsequent
prune and finetune stages are highly efficient, each complet-
ing in under 25 minutes and requiring less than 4.0 GB of
VRAM. This low cost demonstrates that subsequent learn-
ing phase within our framework is highly practical.

Results on Standard VLM Benchmark. To measure
generalization capability, we evaluated the performance on
SEED-Bench [28] after their training on all tasks. As shown
in Table E, the compared methods exhibit a significant per-

Table D. Analysis of computational cost.

Vicuna GMM (train) EProj (train) MVP (train / prune / finetune)
Wall-clock time 19h 58min 20h 02min 20h 48min / 24min / 22min
Memory (VRAM) 20.5GB 20.6GB 23.9GB / 4.0GB / 3.1GB

Table E. Results on SEED-Bench after training all tasks.

LLaMa-2 Zero-Shot GMM EProj MoEAdapter MVP
SEED-Bench [28] 42.66 32.08 29.69 34.72 42.59

formance degradation from the Zero-Shot score, with a per-
formance gap ranging from 7.94 to 12.97. In contrast, MVP
achieves a score of 42.59, which is the closest to the Zero-
Shot performance. This performance retention is attributed
to our adaptive knowledge aggregation strategy. For unseen
data, this strategy minimizes the influence of the trained ex-
perts and relies on the retained knowledge of the original
pre-trained projector, thus preventing performance degra-
dation.


