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1. More Details of Proposed Method

1.1. Process of Spatial Transformer
In the spatial transformer network, we first apply an affine
transformation matrix for point-to-point transformations.
Let the transformation matrix be denoted as At, which is
defined in Equation 6. The coordinates of the pixels in
the input and output images are denoted as (xs, ys) and
(xt, yt), respectively. Then, we define a simple normal-
ization operation N that normalizes these coordinates to
the range between −1 and 1 and normalized coordinates
(u, v) := N(x, y). Following the general convention [8], the
point-to-point transformation is represented as follows,ut

vt
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To obtain a differentiable output image, a bilinear sam-
pler is applied, which is defined as follows,

P(xt, yt) =

H∑
n

W∑
m

P(xs, ys) · max(0, 1− | xs − m |)

· max(0, 1− | ys − n |),

(2)

where P(x, y) denotes the pixel value at the coordinates
(x, y). This process ensures that the output image is
smoothly transformed and differentiable, allowing for ef-
fective training of the network.

1.2. Loss Functions in Palmprint Generation Net-
work

During the training of the palmprint generation network, we
employ a composite loss function that encompasses several
distinct components: LKL, L1, LID, and LGAN . These losses
are defined as follows:

LKL = −1
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1 + log σ2
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2
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)
,

L1 = ∥x1 − x′∥1 ,
LID = 1− COS(F∗(x2),F∗(x′)),

LGAN = Ex [logD(x1, x′)] + Ex,s [log (1− D(x1,G(x2, s)))] .
(3)

Here, µs and σ2
s represent the mean and variance of the style

code s, respectively. The function COS(·, ·) computes the
cosine similarity between two vectors, F∗ refers to a pre-
trained palmprint recognition network, and D and G denote
the discriminative and generative networks, respectively.

Figure 1. Example images of public palmprint datasets.

2. Public Palmprint Datasets

Figure 1 illustrates a selection of palmprint images from
publicly available datasets. Each row of images corre-
sponds to a single identity under one dataset. It is evident
that the MPD [19], XJTU-UP [14], and BJTU [2] datasets
exhibit significant intra-class variation, while the CASIA
[15], TongJi [18], and PolyU [17] datasets demonstrate rel-
atively lower intra-class variation.

3. Additional Experimental Results

3.1. Results with Different Metrics
We present performance on challenging datasets under
more metrics, e.g., TAR@FAR=1e-3, TAR@FAR=1e-4,
and EER, in Table 1.

3.2. Results with Different Baseline
We conduct additional comparative experiments based on
ElasticFace [1] as a recognition baseline. The Resnet-50 [6]
is chosen as the backbone. Experimental results are shown
in Table 2. We keep the same conclusion as in the main text.



Table 1. Comparative performance on challenging datasets, under the open-set protocol, with ArcFace [5] as baseline and ResNet-50 [6]
as the backbone for all methods. Results are presented in TAR@FAR and EER

Methods MPD XJTU-UP BJTU

EER↓ @1e-3↑ @1e-4↑ EER↓ @1e-3↑ @1e-4↑ EER↓ @1e-3↑ @1e-4↑
Baseline [5] 0.0940 0.6898 0.5915 0.0480 0.8482 0.7716 0.0953 0.6849 0.5963
RandAugment [4] 0.0896 0.6851 0.5890 0.0330 0.8839 0.8104 0.0664 0.7466 0.6252
TrivialAugment [12] 0.0715 0.7332 0.6262 0.0253 0.9172 0.8588 0.0572 0.7876 0.6888
AdaAug [3] 0.0667 0.7469 0.6516 0.0262 0.9106 0.8517 0.0514 0.7903 0.6910
MADAug [7] 0.0427 0.8145 0.7073 0.0174 0.9416 0.8839 0.0406 0.7825 0.7026
AdvProp [16] 0.0939 0.6895 0.5932 0.0472 0.8490 0.7706 0.0955 0.6867 0.5997
Fast AdvProp [11] 0.0932 0.6916 0.5939 0.0468 0.8516 0.7748 0.0949 0.6901 0.6013
CFSM [9] 0.0856 0.7207 0.6313 0.0324 0.9035 0.8462 0.0634 0.7630 0.6776
ARoFace [13] 0.0465 0.8226 0.7291 0.0204 0.9196 0.8536 0.0580 0.7990 0.7111
UAA-p 0.0254 0.9022 0.8254 0.0087 0.9759 0.9517 0.0257 0.9044 0.8550
UAA-s 0.0183 0.9301 0.8675 0.0069 0.9820 0.9597 0.0210 0.9258 0.8716

Table 2. Comparative performance on both challenging and controlled datasets under the open-set protocol, with ElasticFace [1] as baseline
and ResNet-50 [6] as the backbone for all methods. Results are presented in TAR@FAR.

Methods MPD XJTU-UP BJTU TongJi PolyU CASIA
1e-5 1e-6 1e-5 1e-6 1e-5 1e-6 1e-5 1e-6 1e-5 1e-6 1e-5 1e-6

Baseline [1] 0.4589 0.4004 0.6660 0.5924 0.5034 0.4802 0.9369 0.9180 0.9642 0.9422 0.8574 0.8229
RandAugment [4] 0.5117 0.4252 0.7675 0.7031 0.5608 0.5300 0.9770 0.9686 0.9538 0.9329 0.9276 0.8894
TrivialAugment [12] 0.5643 0.4839 0.7993 0.7384 0.6546 0.5701 0.9767 0.9633 0.9580 0.9221 0.9553 0.9341
AdaAug [3] 0.5354 0.4655 0.7409 0.6628 0.5738 0.5537 0.9680 0.9554 0.9622 0.9462 0.9298 0.9057
MADAug [7] 0.6083 0.5091 0.8349 0.7877 0.6585 0.6412 0.9744 0.9565 0.9697 0.9535 0.9545 0.9411
AdvProp [16] 0.4601 0.3988 0.6670 0.5913 0.5102 0.4822 0.9375 0.9172 0.9639 0.9432 0.8593 0.8246
Fast AdvProp [11] 0.4602 0.4013 0.6664 0.6062 0.5052 0.4806 0.9386 0.9190 0.9635 0.9429 0.8607 0.8291
CFSM [9] 0.5461 0.4554 0.8108 0.7624 0.6254 0.5904 0.9549 0.9349 0.9668 0.9406 0.9011 0.8722
ARoFace [13] 0.6354 0.5568 0.8006 0.7115 0.6489 0.6179 0.9771 0.9553 0.9583 0.9116 0.9593 0.9460
UAA-p 0.7513 0.6738 0.9262 0.8869 0.7967 0.7468 0.9868 0.9757 0.9847 0.9746 0.9802 0.9738
UAA-s 0.7957 0.7024 0.9319 0.9000 0.7887 0.7641 0.9846 0.9665 0.9792 0.9663 0.9830 0.9753

Table 3. More results of ablation experiments. ‘K-T’ and ‘K-G’
denote the optimization steps for the spatial transformation mod-
ule and the palmprint generation network, respectively. ‘γ’ rep-
resents the augmentation ratio. The UAA is implemented in a se-
quential manner.

K-T K-G γ
MPD XJTU-UP BJTU

1e-5 1e-6 1e-5 1e-6 1e-5 1e-6

1 1 0.5 0.7779 0.6811 0.9245 0.8928 0.8142 0.7850
1 2 0.5 0.8075 0.7289 0.9332 0.8917 0.8192 0.7892
2 1 0.5 0.7550 0.6678 0.9085 0.8591 0.8170 0.7887
2 2 0.5 0.7681 0.6656 0.9105 0.8636 0.8311 0.8079

1 1 0.25 0.7474 0.6631 0.9068 0.8736 0.7313 0.7045
1 1 0.50 0.7779 0.6811 0.9245 0.8928 0.8142 0.7850
1 1 0.75 0.8140 0.7243 0.9293 0.8822 0.7956 0.7626

3.3. More Ablation Study
Different Numbers of Optimization Steps In the adver-
sarial training, we employ PGD [10], which utilizes a K-
step iterative process to optimize the control vector z. We
try a different number of optimization steps K for both the
spatial transformation module and the palmprint generation
network, with the experimental results presented in Table 3.

Table 4. Performance of the palmprint generation method
BézierPalm [20] and the method that combines it with our pro-
posed UAA.

Methods MPD XJTU-UP BJTU
1e-5 1e-6 1e-5 1e-6 1e-5 1e-6

BézierPalm [20] 0.6834 0.6020 0.8300 0.7697 0.7750 0.7596
UAA-s 0.8075 0.7289 0.9332 0.8917 0.8192 0.7892
combined 0.8882 0.8212 0.9462 0.9196 0.9148 0.8839

Different Augmentation Ratios During training, we
augment the training samples in a batch by 25%, 50%, and
75%, respectively. The results are shown in Table 3.

Evaluation of Identity Consistency We quantitatively
evaluate identity consistency using paired original and aug-
mented images (x, x′), and a pre-trained recognition model
F, expressed as C = 1

NΣ
N
i=1cos sim(F(xi),F(x′i)). For

N=10k, we report Cgeometric = 0.88, Ctextural = 0.92 and
Ccombined = 0.80.

Palmprint generation methods Table 4 shows that
combining with palmprint generation methods, our pro-
posed UAA achieves better performance.
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