
Stereo Any Video: Temporally Consistent Stereo Matching
Supplementary Material

In this supplementary material, we provide additional
details and more qualitative results. We highly recommend
referring to the video we provided, since the visual quality
of the disparities can be better accessed with videos.

1. Settings on Table 1.
We compare the temporal consistency of video disparity es-
timated by DepthCrafter [3] and RAFTStereo [8] by col-
lecting ratings from 10 recruited participants. Each partic-
ipant’s rating is determined by the average of two scores:
flickering region fr and flickering strength fs out of three
possible levels: 0, 1, and 2. A higher fr indicates a
larger flickering region within the video disparity, while a
higher fs reflects a greater depth discrepancy between video
frames.

2. Feature Extraction
In the feature extraction stage, when processing a video se-
quence with the monocular video depth model, we first re-
size it to ensure its dimensions are divisible by 14, main-
taining consistency with the model’s pretrained patch size.
After obtaining the feature maps, we resize the image back
to its original dimensions. Unlike previous methods [6, 8],
which normalize the image directly to the range [-1,1], we
apply mean and standard deviation normalization based on
ImageNet pre-trained models. This ensures better align-
ment with the VDA framework. The monocular depth
model produces feature maps with 32 channels, while the
CNN encoders extract both image and context features with
96 channels each. These feature maps are concatenated to
form a 128-channel representation, which serves as input to
the subsequent correlation module.

3. Temporal Convex Upsampling
We develop temporal convex upsampling that extends tradi-
tional spatial upsampling techniques to the temporal dimen-
sion, enabling precise disparity interpolation across both
spatial and temporal dimensions. As shown in Figure 1,
our implementation leverages a convex combination ap-
proach, which ensures that the upsampled disparity main-
tains physical consistency while preserving intricate motion

# F[n, 2, t, h, w] - image flow field
# M[n, c, t, h, w] - learnable weights
# r - upsampling factor

# reshape and normalize mask weights into
# M[n, 1, 27, 1, r, r, t, h, w]
M = softmax(reshape(M), dim=2)

# Patch and reshape the scaled flow
# F[n, 2, 27, 1, 1, 1, t, h, w]
F = unfold_3d(r*F, kernel=[3,3,3])

# Compute the weighted (convex) combination
# F_upsampled[n, 2, 1, r, r, t, h, w]
F_upsampled = sum(M*F, dim=2)

# permute and upsample the flow
# F_upsampled[n, 2, t, r*h, r*w]
F_upsampled = reshape(permute(F_upsampled))

return F_upsampled

Figure 1. Pythonic pseudo-code for the implementation of tempo-
ral convex upsampling with a kernel size of 3× 3× 3.

patterns. The method operates by first reshaping and nor-
malizing mask weights through a softmax operation, creat-
ing a probability distribution across neighboring elements.
Subsequently, we extract local patches from the input dis-
parity field using a 3D unfold operation typically with a
kernel size of 3, scaling the disparity vectors by the upsam-
pling factor to maintain velocity magnitudes. The core of
the algorithm lies in computing the weighted sum of these
patches using the normalized mask weights, effectively per-
forming a learned interpolation that respects the underlying
motion structure. Our implementation can efficiently han-
dle arbitrary batch sizes and integrate with existing deep
learning architectures, making it suitable for video under-
standing tasks with high-resolution disparity fields.
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4. Datasets
4.1. SceneFlow (SF)
SceneFlow [9] consists of three subsets: FlyingThings3D,
Driving, and Monkaa.
• FlyingThings3D is an abstract dataset featuring moving

shapes against colorful backgrounds. It contains 2,250
sequences, each spanning 10 frames.

• Driving includes 16 sequences depicting driving scenar-
ios, with each sequence containing between 300 and 800
frames.

• Monkaa comprises 48 sequences set in cartoon-like envi-
ronments, with frame counts ranging from 91 to 501.

4.2. Sintel
Sintel [1] is generated from computer-animated films. It
consists of 23 sequences available in both clean and final
rendering passes. Each sequence contains 20 to 50 frames.
We use the full sequences of Sintel for evaluation.

4.3. Spring
Spring [10] is a high-fidelity synthetic dataset rendered
from the open-source animated short film Spring by the
Blender Foundation. It features long, continuous sequences
with realistic human and animal motion in natural envi-
ronments. The dataset provides dense frame-wise render-
ing with cinematic quality, ground-truth camera parameters,
depth maps, and optical flow among diverse scenes.

4.4. Dynamic Replica
Dynamic Replica [5] is designed with longer sequences and
the presence of non-rigid objects such as animals and hu-
mans. The dataset includes:
• 484 training sequences, each with 300 frames.
• 20 validation sequences, each with 300 frames.
• 20 test sequences, each with 900 frames.
Following prior methods [4, 5], we use the entire training
set for model training and evaluate on the first 150 frames
of the test set.

4.5. Infinigen SV
Infinigen SV [4] is a synthetic dataset designed for out-
door natural environments. It consists of 226 photorealistic
videos, each lasting between 3 and 20 seconds, recorded at
24 fps. The dataset is divided into:
• 186 training videos
• 10 validation videos
• 30 testing videos
Similar to Dynamic Replica, we use the full training set for
training and evaluate on the first 150 frames of the test set.

4.6. Virtual KITTI2
Virtual KITTI2 [2] is a synthetic dataset that simulates out-
door driving scenarios. It consists of five sequence clones

from the KITTI tracking benchmark, with variations in
weather conditions (e.g., fog, rain) and camera configura-
tions.

Since this dataset is being used for video stereo matching
evaluation for the first time, we randomly select 10% of the
dataset as the test set. The selected test sequences are:
• Scene01 15-deg-left
• Scene02 30-deg-right
• Scene06 fog
• Scene18 morning
• Scene20 rain

4.7. KITTI Depth
KITTI Depth [12] is a real-world outdoor dataset collected
for autonomous driving applications. It provides sparse
depth maps captured using a LiDAR sensor. Following
prior work [7], we use the following test sequences:
• 2011 09 26 drive 0002 sync
• 2011 09 26 drive 0005 sync
• 2011 09 26 drive 0013 sync
• 2011 09 26 drive 0020 sync
• 2011 09 26 drive 0023 sync
• 2011 09 26 drive 0036 sync
• 2011 09 26 drive 0079 sync
• 2011 09 26 drive 0095 sync
• 2011 09 26 drive 0113 sync
• 2011 09 28 drive 0037 sync
• 2011 09 29 drive 0026 sync
• 2011 09 30 drive 0016 sync
• 2011 10 03 drive 0047 sync

4.8. South Kensington SV
South Kensington SV [4] is a real-world stereo dataset cap-
turing daily life scenarios for qualitative evaluation. It con-
sists of 264 stereo videos, each lasting between 10 and 70
seconds, recorded at 1280×720 resolution and 30 fps. We
conduct qualitative evaluations on this dataset.

5. Comparison Methods
We compare our approach against representative image-
based stereo matching methods—RAFTStereo [11],
IGEVStereo [14], and Selective-IGEV [13]—as well as
video-based stereo matching methods—DynamicStereo
[5] and BiDAStereo [4]. For the evaluations presented in
Table 2, we use the official model checkpoints provided in
the open-source implementations. For Table 3, we employ
the following specific checkpoints:
• RAFTStereo: Robust Vision Challenge checkpoint
• IGEVStereo & Selective-IGEV: Middlebury fine-tuned

checkpoints
• DynamicStereo & BiDAStereo: Mixed-dataset fine-tuned

checkpoints from [4]



6. Application
Figure 2 demonstrates additional applications that benefit
from our method’s ability to produce both accurate and tem-
porally consistent depth sequences, including adding atmo-
spheric fog effects and the adjustment of lighting condi-
tions. Specifically, we implement these effects by blending
the input video frames with supplementary color maps, with
the blending parameters determined by the estimated depth
values to simulate varying transparency at the pixel level.
As illustrated in the figure, the resulting frames exhibit high
consistency in color without perceptible flickering, further
corroborating the robust temporal consistency achieved by
our method.

7. Qualitative Results on Real-world Datasets
Figure 3 gives another demo on a dynamic real world video
predicted using our method. Figure 4 and Figure 5 demon-
strate comparison on real world indoor scenes. Figure 6,
Figure 7, and Figure 8 give more examples on real world
outdoor scenes.

8. Qualitative Results on Synthetic Datasets
Figure 9 presents the comparison results on Virtual KITTI2
dataset. Figure 10, Figure 11, and Figure 12 give compari-
son results on Infinigen SV dataset. Figure 13 and Figure 14
show visualization comparisons on Sintel dataset, and Fig-
ure 15 shows the results on Dynamic Replica.



Figure 2. Examples of visual effects that could benefit from using our method, including adding fog effects and adjusting light conditions.

Figure 3. Another demo prediction on a dynamic real-world stereo video using our method.



Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames

Figure 4. Qualitative comparison on a dynamic indoor scenario from the South Kensington SV dataset [4].

Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames

Figure 5. Qualitative comparison on a dynamic indoor scenario from the South Kensington SV dataset [4].



Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames

Figure 6. Qualitative comparison on a dynamic outdoor scenario from the South Kensington SV dataset [4].

Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames

Figure 7. Qualitative comparison on a dynamic outdoor scenario from the South Kensington SV dataset [4].



Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames

Figure 8. Qualitative comparison on a dynamic outdoor scenario from the South Kensington SV dataset [4].

Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames Ground Truth

Figure 9. Qualitative comparison on Virtual KITTI2 dataset [2].

Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames Ground Truth

Figure 10. Qualitative comparison on Infinigen SV dataset [4].



Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames Ground Truth

Figure 11. Qualitative comparison on Infinigen SV dataset [4].

Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames Ground Truth

Figure 12. Qualitative comparison on Infinigen SV dataset [4].

Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames Ground Truth

Figure 13. Qualitative comparison on Sintel dataset [1].



Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames Ground Truth

Figure 14. Qualitative comparison on Sintel dataset [1].

Selective-IGEV Stereo Any Video (ours)DynamicStereo BiDAStereoLeft Frames Ground Truth

Figure 15. Qualitative comparison on Dynamic Replica dataset[5].
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