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A. Method Overview Table 10. Performance comparison of the three steps of COIN on
adjacent and non-adjacent cells on the MoNuSeg [28, 29] train set.
Our approach is divided into three steps, and we assess the Method Non-adjacent Cells Adjacent Cells
effect of each step in Tab. 10 on adjacent and non-adjacent All. U FN FP | Al IoU FN FP
cells (see Fig. 13 for more information). In Step I, pixel- SSA[50] miccarzo 0201 0.547 0254 0.199 | 0.176  0.546 0267 0.188
level cell propagation utIthng USsS [16] was used to in- +Step 1 (Sec.3.1) 0300 0.435 0.110 0456 | 0.252 0471 0.142 0.387
o . . +5Step 2 (Sec.32) 0341 0615 0235 0.149 | 0211 0529 0325 0.146
crease the sensitivity to detect all instances, resulting in a 4Step 3 (Sec. 3.3) 0.510 0.663 0.126 0211 | 0.405 0.701 0.152 0.147

significant drop in false negative rate (FN). Specifically, FN
decreases 2.3-fold, corresponding to Fig. 9 that illustrates
how most cells become detected following Step I (the sec-
ond row). However, this was accompanied by an increase
in the rate of false positives (FP), which was handled by
incorporating optimal transport (OT) [48] for its ability to
cluster minor pixel groups. In Step 2, to identify and use
only error-free instances for recursive self-distillation, we
introduce, for the first time, an instance-level confidence
scoring approach to automatically select highly confident
instances without depending on the ground truth (GT) anno-
tations. This scoring approach measures the consistency be-
tween the baseline UCIS model [50] prediction and SAM-
generated mask and selects only the instances close to GT
(i.e., instances with AJI scores close to 1). As shown in the
table (the third row) significantly decreases FP, particularly
threefold for non-adjacent cells. Here, consistency-based
selection acts as implicit memory that preserves error-free
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masks with the dynamically adjusted threshold d;, (Eq. (7)),
preventing the accumulation of noisy labels. Additionally,
we chose to decouple pseudo-label generation from training
(USS once/image, SAM each epoch) to avoid end-to-end
fine-tuning yet still double AJI without increasing the infer-
ence time (Tabs. 2, 4, and 9). Training slows by 50-75%
compared to the baseline [50] (Tab. 10), and our modular
design supports multiple UCIS (SSA [50], PSM [5]; Tabs.
2 and 4) and USS models [3, 9, 16, 44] (Tab. 12). Then,
in Step 3, the selected instances are used for recursive self-
distillation to expand the confidence, progressively increas-
ing the number of highly confident instances each round.
Notably, this last step results in a 1.9-fold improvement in
AlJI for adjacent cells (the fourth row), highlighting substan-
tial advancements in our method’s accuracy in cell instance
segmentation, as depicted in Fig. 9.

Furthermore, in Tab. 11, we present a component-wise
ablation study to individual modules of COIN and their



Table 11. Effect of key components in COIN on the MoNuSeg
train set [28, 29] (Baseline: SSA [50], Extension of Tab. 5).

| COIN Components | Metrics
| USS OT CRF Watershed | AJI(1) IoU (1) FN(}) FP(})
(a) X X X X 0.001 0.305 0.536 0.159
v X X X 0.001 0.439  0.020 0.552
(b) v v X X 0.001 0.539  0.163 0.303
v X v X 0.001 0443 0.022 0.549
(c) v v v X 0.001 0.543  0.157 0.301
Ours/Step1 v/ v v 4 0.380 0.543  0.157 0.301

+USS: EN({) +OT and +CRF: FP(]) +Watershed: AJI(1)

contribution to the cell segmentation performance on the
MoNuSeg [28, 29] train set. Compared to the baseline [50]
without CRF and watershed (the first row), USS incorpora-
tion significantly reduced FN from 0.536 to 0.020 (the sec-
ond row), accompanied by an increase in FP from 0.159
to 0.552 (Tab. 11(a)). While the application of CRF [26]
showed only a 0.4%p increase in IoU (the fourth row), OT
alone reduced FP by 1.8 times more than did CRF alone
(Tab. 11(b)). Notably, applying OT before CRF reduces
the FP from 0.552 to 0.303, which is almost identical to
the reduction seen when applying OT alone (from 0.552 to
0.301), suggesting that OT is the key factor in adjusting FP,
while CRF has minimal impact. Lastly, as shown in Eq. (5),
watershed algorithm [50] separates adjacent binary masks
into distinct instances, a standard post-processing step in all
UCIS baselines [5, 50]. Therefore, while IoU remained at
0.543, AJl increased from 0.001 to 0.380 (see Tab. 11(c)).

B. Method Details

B.1. Details of Unsupervised Semantic Segmenta-
tion

We are the first case to apply DINOv2 [44] and MAE [16]
for analyzing pathological images (see Fig. 2). As shown
in Fig. 3 and Tab. 5, the USS models [16, 44] group sim-
ilar pixels (e.g., cells) from UCIS seeds [50], resulting in
more than 26 x reduction in FN (see Tab. 11(b)). However,
USS’s pixel similarity-based grouping often fails to distin-
guish between cells and tissues of similar colors. As shown
in Fig. 4, the USS output S§* cannot differentiate cell ac-
tivation from the background. We address this substantial
increase in FP by incorporating optimal transport (OT) [48]
(see Sec. 3.1, Tab. 5, and Fig. 4).

B.2. Class-level Average Pooling

Class-level average pooling (CAP) [22] is the modified ver-
sion of the standard pooling technique (i.e., global average
pooling) in which the average of the grouped embedding
vectors outputs class-specific centroids. In Sec. 3.1. the
implementation of CAP to M} (1},) yields class-specific
USS centroids V*°. In our study, class denotes either cell

or background.

B.3. Push Operation in Optimal Transport

The push operation 7" involved in Eq. (4) is the optimal-
transport plan that redistributes the mass from the origi-
nal pixel similarity distribution (.5%) to the target distribu-
tion consisting of two distinct classes: foreground (cells)
and background (tissue) [22, 33]. T;; determines how
much mass moves from pixel ¢ to class j by minimizing
., Ti(1 = Si%) — AH(T)).

The computed 7" then pushes the original similarity map
Sus to the refined mask SOT by SOT = T o S“*, sharpen-
ing pixel-wise foreground-background boundaries. We con-
firmed that this operation is robust to changes in A (Fig. 11).

B.4. Watershed Algorithm

The watershed algorithm [50] is a classical image segmen-
tation technique that is particularly effective for separating
overlapping objects. Specifically, the image, treated like a
topographic map, is turned into a grayscale that allows pix-
els to have distinctive values (0 to 255) with high intensity
indicating peaks and low intensity denoting valleys. Imag-
ine pouring water over this topographic map, where the val-
leys are flooded first and eventually merge as the water rises.
Each valley contains different labels, and to prevent the la-
bels from merging, the barriers are built at locations where
water merges. This process continues until the peaks are
all submerged underwater. Here, the barriers indicate the
segmentation result. In previous work [50], the instance is
obtained in the post-processing step which uses the inverse
of the distance transform and the local maxima as markers
(i.e., labels) for the watershed algorithm (see Sec. 3.4 and
Fig. 2 in [50]). Inspired by this, we utilize the watershed
algorithm to obtain an initial instance mask Ej (I;) for N
instances before training the edge decoder in Eq. (5).

B.5. Details of SAM Consistency

As shown in Fig. 16, we hypothesize and confirm that SAM
[25] faithfully reconstructs an instance’s shape only when
the input prompt (i.e., model-predicted mask) aligns closely
with the ground truth, but when the prompt is noisy or incor-
rect, SAM often overgeneralizes and activates most of the
surrounding pixels (Fig. 16; SAM Failure Cases). Thus, our
method does not rely solely on SAM because the applica-
tion of SAM to out-of-distribution data (e.g., cell segmenta-
tion) itself introduces uncertainty. For example, when SAM
randomly targets the background pixel, many pixels become
overgeneralized as foreground, jeopardizing the segmenta-
tion performance (top right side of Fig. 16). Therefore, a
high IoU between the input prompt (model-predicted mask)
and SAM’s output reliably flags error-free instances, and
these top-scoring masks achieve AJI values nearly iden-
tical to those using ground-truth labels (Fig. 8). Specifi-



cally, COIN outputs low scores when either the UCIS base-
line or SAM fails (right) and high scores when both suc-
ceed (left). Without our scoring approach, SAM would fre-
quently assign multiple pixels in the background as cell in-
stances, preventing the detection of individual cells. The
high IoU scores corresponding to success cases for both pre-
dictions suggest that our instance-level confidence scoring
method can automatically select highly confident instances
for training without relying on ground truth annotations.
Therefore, unlike the naive application of SAM (the sec-
ond row of Tab. 8), we observe a substantial performance
improvement when our scoring method is applied (the third
row of Tab. 8).

B.6. Canny Algorithm

In contrast to standard edge detection applications that pro-
cess RGB images, we simply extract edges from binary
masks (see Eq. (10)). Therefore, we utilize the tradi-
tional and well-known Canny algorithm [2]. Processing a
1000 x 1000 binary mask with this algorithm requires ap-
proximately seven milliseconds.

B.7. Details of Pseudo Masks and Edge Decoder

In Step 3 (Sec. 3.3), two pseudo masks are generated based
on the accepted indices A5 from Eq. (8). As depicted in
Fig. 10, pseudo binary mask M}, (t) from Eq. (9) refers
to the pixels designated as foreground (i.e., cell), which
corresponds to high-scoring instances within the scored in-
stances. Therefore, the low-scoring instances are omitted
and not used for training. The pseudo edge mask M éd ge(t)
from Eq. (10) denotes the cell boundaries. The pseudo bi-
nary and edge masks in Fig. 10 are the decomposed repre-
sentation of the pseudo mask at ¢ = 1 from Fig. 6.

Unlike existing UCIS models [5, 50], our framework in-
corporates an edge decoder to train on pseudo edge masks.
Inspired by recent studies [33, 34, 45], the edge decoder
learns the boundaries between neighboring instances to ad-
dress the challenge of distinguishing adjacent cells. Specif-
ically, DeepSnake [45] trains on the loss from iterative con-
tour deformation (refer to Eq. (4) at [45]), which iteratively
deforms the initial contour to approach the actual object
boundary, and Point2Mask [33] learns high-level boundary
map by utilizing the mask affinity equivalence among the
eight neighbor pixels (refer to Eq. (7) at [33]). PolyTrans-
form [34] trains on the losses from the feature extraction
network and deforming network for learning strong object
boundaries and predicting the offset for each vertex, respec-
tively (refer to Sec. 3.4 from [34]). Thus, including an
edge decoder allows our approach to learn discriminative
instance features during training, leading to significant im-
provements in segmentation accuracy (see Tab. 14).

Figure 10. Illustration of binary and edge pseudo masks. Green
represents the cell foreground, and yellow lines denote the cell
edges. White indicate pixels excluded from training. Note that
only high-scoring instances (red) are used to generate pseudo
masks.

B.8. Datasets

Main experiments (Tab. 2) are conducted on MoNuSeg
[28,29] and TNBC [42] datasets. MoNuSeg contains multi-
organ nuclei segmentation images that are H&E-stained and
captured at 40x magnification. Specifically, it includes a to-
tal of 21,623 annotated nuclear boundaries. TNBC (Triple
Negative Breast Cancer) dataset is generated at the Curie
Institute and consists of 50 images with 4,022 annotated
cells. BRCA [1] contains breast cancer H&E-stained im-
ages. CPM-17 [56] and PanNuke [12] are derived from
multiple types of tissues, consisting of 205,343 and 7,750
annotated nuclei, respectively. CryoNuSeg [37] contains
fully annotated H&E-stained nuclei instance segmentation
images derived from frozen tissue samples (FS) of 10 hu-
man organs.

C. Additional Quantitative Results
C.1. OT Hyperparameters

The experiment on OT parameters, as shown in Fig. 11,
demonstrates that the IoU values remain stable across vary-
ing A values. Specifically, when A is increased from 0.01
to 0.4, the IoU fluctuates only slightly, with the highest IoU
observed at A = 0.1 (0.543) and the lowest at A = 0.01
(0.532). The difference between the maximum and min-
imum IoU is just 0.011, indicating that the model’s per-
formance is not significantly influenced by the parameter
value.

C.2. Effect of Adaptive Thresholding

We train for 100 epochs as in all experiments (Tab. 9) and
observe that on the MoNuSeg [28, 29] test set, IoU steadily
improves and plateaus around 40% of training (2.4 hours;
Fig. 12, pink box), regardless of threshold type. Notably,
our non-parametric, adaptive threshold (green) consistently
outperforms fixed parametric variants by about 3%p in IoU.

To further understand why ¢, adapts so effectively, we
plot the standard deviation of consistency scores across
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Figure 12. Performance comparison between fixed and adap-
tive threshold.

training epochs (Fig. 12, blue line). Since dy, is character-
ized by dividing its standard deviation by the mean, and
a high standard deviation implies a large variation in pre-
dicted instance scores (i.e., greater uncertainty), we focus
on how this uncertainty evolves during training. As shown
in Fig. 12, the standard deviation is high early in the training
process, indicating that model predictions vary significantly
due to noisy or uncertain instances. However, as training
progresses, the standard deviation steadily decreases, re-
flecting a stabilization of model predictions. This aligns
with the notion of performance saturation (pink box). The
adaptive nature of dj, enables it to respond to these changes
by filtering out early noise and adjusting as confidence so-
lidifies. In contrast, the fixed thresholds fail to remove noisy
instances effectively in the early stages of self-distillation,
resulting in suboptimal performance compared to our adap-
tive threshold.

C.3. Model-agnostic Improvements with Various
USS Backbones

We extensively evaluate our method by experimenting on
different USS backbones [3, 9, 16, 44] in all metrics on
TNBC [42] test set. In Tab. 12, we compare the perfor-
mance of Masked Autoencoder (MAE) [16], which is lever-
aged for all other experiments, against DINOv1 [3], DI-
NOvV2 [44], and DINOv2-reg [9], which demonstrates that
MAE outperforms all USS backbones across all metrics.
Specifically, for instance segmentation performance, MAE
outperforms DINOvV1 by at least +2%p, DINOv2 by at least
+1%p, and DINOv2-reg by at least +0.5%p. MAE also
surpasses other USS backbones regarding semantic seg-

Table 12. Comparison of four USS backbones [3, 9, 16, 44] on the
TNBC [42] test set.

Backbone \ Instance Segmentation Semantic Segmentation
| Al PQ IoU Dice
DINOv1 [3] 0.534 0.519 0.764 0.721
DINOV2 [44] 0.558 0.528 0.771 0.733
DINOv2-reg [9] 0.563 0.533 0.780 0.754
MAE [16] 0.568 0.540 0.797 0.774

Table 13. Performance evaluation of COIN on adjacent and non-
adjacent cells on the MoNuSeg [28, 29] test set.

Method Non-adjacent Cells Adjacent Cells
AJIL(1) IoU (1) AJL(T) IoU (1)
SSA [50] miccar2o 0.288 0.583 0.235 0.632
SSA + COIN (Ours) 0.602 0.729 0.528 0.750
A +0.314 +0.146 +0.293 +0.118
PSM [5] miccar23 0.498 0.695 0.408 0.660
PSM + COIN (Ours) 0.601 0.725 0.527 0.748
Apem +0.103 +0.030 +0.119 +0.088

A gsq: Performance gap between SSA [50] and our proposed method.
Apsm: Performance gap between PSM [5] and our proposed method.

Table 14. Effect of the edge decoder on the MoNuSeg [28, 29] test
set.

Edge Decoder Non-adjacent Cells Adjacent Cells
AJI (1) IoU (1) AJL(T) ToU (1)
X 0.594 0.712 0.493 0.738
4 0.602 0.729 0.528 0.750
Acdge +0.008 +0.017 +0.035 +0.012

Acdge: Performance enhancement made by training the edge decoder.

mentation, with at least +3.3%p for DINOv1, +2.6%p for
DINOV2, and +1.7%p for DINOv2-reg. Therefore, we se-
lect MAE as the USS backbone for all experiments.

C.4. Performance on Adjacent Cells

To validate our method’s performance in distinguishing ad-
jacent cells, we specifically categorize non-adjacent cells
and adjacent cells in the ground truth image of MoNuSeg
[28, 29], as depicted in Fig. 13. Following the dilation
of ground truth cell edges and connected component la-
beling (CCL) [49], we identify cells that are connected
to two or more cells as adjacent cells. Tab. 13 demon-
strates that our approach consistently enhances the perfor-
mances of existing UCIS models across both adjacent and
non-adjacent cell types. For non-adjacent cells, our model
achieves +31.4%p in AJI and +14.6%p in IoU with SSA
and 4-10.3%p in AJI and +3%p in IoU with PSM. Notably,
a similar pattern of performance improvement occurs with
adjacent cells, with +29.3%p in AJI and +11.8%p in IoU
with SSA and +11.9%p in AJI and +8.8%p in IoU with
PSM. These results highlight COIN’s ability to accurately
separate instances, validating performance improvements in
cell instance segmentation.



Input Image Ground Truth Adjacent Mask

Figr 13. TIllustration of adjacent and non-adjacent cells.
Green represents the adjacent cells that are connected to at least
two other cells, and red indicates non-adjacent cells that are not
connected to any other cells.

C.5. Effect of Edge Decoder

In Tab. 14, we assess the impact of incorporating an edge
decoder on the MoNuSeg [28, 29] test set. The application
of our edge decoder enhances segmentation performance
for both adjacent and non-adjacent cells. Notably, for adja-
cent cells, the performance improves by +1.7%p in AJI and
+3.5%p in IoU when the edge decoder is present, demon-
strating its capability to effectively distinguish cell bound-
aries and enhance overall segmentation results.

D. Additional Qualitative Results
D.1. Comparison of UIS Methods and Ours

We compare the qualitative performance of our method
against UIS baselines [32, 59] in Fig. 15. As demonstrated
in Tab. 2, our proposed method substantially outperforms
all UIS models [3, 16, 44] that have low AJI scores.

D.2. Examples of SAM-based Instance-level Confi-
dence Scoring

Previous methods [39, 63] that leverage SAM [25] rely on
outputs generated by SAM from manual annotations (e.g.,

points) to create pseudo labels. Their dependency on such
annotations indicates that the annotation burden is persis-
tent. In contrast, our work utilizes SAM for confidence
measurement and confident instance selection without re-
quiring SAM-based image-related manual annotations (see
Sec. 3.2). The proposed scoring process is completely un-
supervised and automatic, and it is the first-ever case to
leverage SAM for confidence score-related tasks. Refer to
Fig. 14 for example visualizations of SAM-based scoring.
Notably, our scoring approach separates adjacent cells ef-
fectively even when the pseudo mask doesn’t distinguish
individual cells (the fourth row).

D.3. Limitations of Recursive Self-distillation

When we tracked IoU across each self-distillation iteration
in Fig. 12, we noticed that a small number of noisy pseudo-
labels persist in rare cases when the initial USS propaga-
tion fails (e.g., transparent cells). This particular case is a
persistent challenge faced by prior UCIS approaches [5, 50]
including ours, but nonetheless, these cases are rare and rep-
resent only a small fraction of our datasets, exerting limited
influence on the overall accuracy. We demonstrate example
failure cases in Fig. 17.

D.4. Additional State-of-the-art Qualitative Results

In Figs. 18 and 19, we provide additional qualitative com-
parisons between our COIN method, two image-related
annotation-driven models [11, 63], and one image-related
annotation-free model [50]. As confirmed by the improve-
ments across all metrics in Tab. 2, these visual examples
further highlight that the output of our method is not only
comparable but often surpasses the performance of super-
vised models that depend on image-related annotations. It
is noteworthy given that COIN achieves high-quality seg-
mentation without depending on such labor-intensive and
time-consuming annotations.

D.5. Model-agnostic Improvements with Various
UCIS Models

Fig. 20 illustrates the model-agnostic performance improve-
ment by COIN on two different UCIS baselines [5, 50]. Our
framework notably improves the segmentation performance
for both SSA [50] and PSM [5], demonstrating its model-
agnostic nature. Specifically, COIN significantly improves
SSA’s missed and chunky predictions and PSM’s incom-
plete edges, demonstrating the flexibility of our method.

D.6. Consistent Improvements on Multiple Datasets

In Figs. 21, 22, 23, 24, and 25, we further validate the scal-
ability of our method by comparing qualitative improve-
ments against the UCIS baseline (e.g., SSA [50]) on mul-
tiple datasets, including BRCA [1], CPM-17 [56], Cry-
oNuSeg [37], and PanNuke [12]. As demonstrated in Tab. 3,



our model combined with SSA substantially improves se-
mantic and instance segmentation performances throughout
multiple datasets.
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Figure 14. Qualitative examples of our instance-level confidence scoring based on SAM [25].
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Figure 15. Qualitative comparison of UIS [59] and COIN combined with SSA [50] on the MoNuSeg [28, 29] test set.
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Figure 16. Visualization of success and failure cases for our propagated masks and their corresponding SAM-refined masks [25].
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Figure 17. Visualization of failure cases for recursive self-distillation on the MoNuSeg [28, 29] train set.
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Figure 18. Qualitative comparison of annotation-driven and -free methods [11, 50, 63] on the MoNuSeg [28, 29] test set.
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Figure 20. Model-agnostic qualitative comparison of two UCIS models [5, 50] on the MoNuSeg [28, 29] test set.
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Figure 22. Qualitative examples on the BRCA [1] test set.
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