
Few-Shot Pattern Detection via Template Matching and Regression

Supplementary Material

In this supplementary material, we provide additional ex-

perimental results and analysis to support our method, in-

cluding qualitative results.

8. Additional details
8.1. Detailed model architecture
We provide the details of the model architecture in Tab. 10.

We design our model architecture to be as simple as possi-

ble, and there are only 6 learnable layers in total.

module structure # params.

backbone projection linear(in=256, out=512) 0.13M

FTM scaler nn.Parameter 1

box regressor

conv(k=(3, 3), in=1024, out=1024) 9.44M

LeakyReLU 0

linear(in=1024, out=4) 4096

presence classifier

conv(k=(3, 3), in=1024, out=1024) 9.44M

LeakyReLU 0

linear(in=1024, out=1) 1024

Table 10. The total learnable layers in TMR. We exclude the fea-

ture backbone parameters that are frozen. The “k” in the table

denotes the 2D convolution kernel size.

8.2. Template extraction details
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Figure 9. Using RoIAlign, the template T (blue box) is extracted

by adaptively determining its size (th, tw) (blue dashed box) to

fully cover the support exemplar’s region (sh, sw) (red box) on F ,

which preserves spatial alignment between F and T .

Prior methods typically use Global Average Pooling or

RoIAlign to produce fixed-size prototypes. However, these

approaches can lead to spatial misalignment between the

feature map F and the template T , which degrades tem-

plate matching performance. As shown in Fig. 9, we ad-

dress this issue by adaptively determining the template size

(th, tw) based on the support exemplar’s region (sh, sw) on
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Figure 10. Definition of XP using GT centers and margin δ.

F (red box), rounding it up to the smallest grid-aligned re-

gion that fully contains the support exemplar’s area (blue

dashed box). Using this size, we apply RoIAlign to extract

a spatially aligned template (blue box), enabling more pre-

cise and consistent template matching.

8.3. Definition of the extended center point set
To avoid supervising the presence prediction with only a

single pixel at the ground-truth center, we define XP as a

set of extended center point within a margin δ around each

ground-truth center point (xc, yc).
A location (x, y) is considered positive if it falls within

this margin region around the center of any ground-truth
bounding box. As illustrated in Fig. 10, XP is defined as
follows:

XP =

{
(x, y)

∣∣∣∣ ∀(xc, yc, w, h) ∈ B, |xc − x|
w

+
|yc − y|

h
≤ δ

}
.

(7)

Here, B denotes the set of ground-truth boxes; (xc, yc) rep-

resents the center coordinates, and (w, h) the width and

height of each ground-truth box. The resulting shape of XP

forms a rhombus centered at each ground-truth location. We

fix δ = 0.33 in all experiments.

8.4. Dataset details
FSCD-147 extends FSC-147 [56] dataset, which includes

only dot annotations for objects, to include bounding box

annotations. It covers 147 object categories with additional

bounding box annotation. FSCD-LVIS includes more com-

plex scenes with multiple object classes, each containing

multiple instances, compared to FSCD-147, where each im-

age has a relatively simple scene. Regardless, FSCD-LVIS

still uses a single pattern per image unlike RPINE that is

annotated with multiple existing pattern classes.

9. Additional experimental details
Qualitative analysis of prototype matching failures.
Fig. 11 shows failure cases of the prototype matching



Figure 11. Noticeable failure cases of prototype matching. Proto-

types collapse the geometric layout of the exemplars, being espe-

cially vulnerable for localizing instances among dense repetition

or patterns including sub-patterns.
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Figure 12. Additional failure case of SAM decoder.

method compared to our template matching approach.

Fig. 13 provides a detailed comparison in terms of box re-

gression (a), matching feature maps (b), and presence scores

(c). In both Fig. 11 and Fig. 13 (a), prototype-matching

models often produces inaccurate bounding boxes that fail

to tightly enclose the target pattern.

Fig. 13 (b) and (c) further illustrate the differences in

feature maps and predicted presence scores, respectively.

Prototype feature maps (FPM) highlight regions with simi-

lar semantics (e.g., edges or colored bends of a book) while

ignoring the exemplar’s spatial structure, making it diffi-

cult to localize the center of the target pattern. In con-

trast, template matching feature maps (FTM) preserve spa-

tial structure and clearly emphasize the central region of the

target pattern, enabling more precise localization. Consis-

tent with this, the predicted presence score maps in Fig. 13

(c) show that prototype-based scores often activate spa-

tially misaligned but semantically related regions, while

template-based scores focus accurately on the true target

center. These observations highlight the limitations of pro-

totype matching in capturing spatial structure and demon-

strate the effectiveness of template matching for precise lo-

calization.

Failure cases of TMR. We analyze the failure cases of

TMR, as shown in Fig. 14. In the first row of Fig. 14, TMR

often fails to detect highly crowded patterns when the sup-

port exemplar is extremely small. In the second row, the

model struggles with highly textured patterns that exhibit

large variations in texture appearance. These examples sug-

gest potential directions for improvement, such as incorpo-
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Figure 13. Comparison between prototype matching and template

matching.

rating multi-scale representations with much higher reso-

lution features and designing pattern-specific backbones to

reduce noise caused by texture variation.

Additional analysis of SAM decoder’s (SD) failures. To

support our main analysis in Sec.6.4, we provide additional

qualitative example highlighting the limitations of the SAM

decoder (SD) in handling non-object patterns. As shown

in Fig.12, although the exemplar includes both the window

and decoration around the window sills, the refined predic-

tion closely aligns with the black window frames, missing

the broader structure present in the exemplar. This edge-

sensitive behavior of SD is consistent with the findings in

the Sec.7.2 of the SAM paper [25], which reports that SD

produces high-recall edge maps even without explicit edge

supervision.

Qualitative results on FSCD-147, FSCD-LVIS and
RPINE. We provide additional qualitative results on the

FSCD-147, FSCD-LVIS and RPINE dataset in Figs. 17,

Figs. 16 and 18 to show the model’s effectiveness. As

shown in Fig. 17, our method effectively detects the given

exemplar. For instance, in the first row, TMR successfully

identifies all instances of the given exemplar, whereas other

state-of-the-art models either fail to detect some instances

or produce false positives. Furthermore, TMR successfully

detects non-object patterns, as shown in the penultimate row

of Fig. 18.
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Figure 14. Qualitative analysis of failure cases in TMR.

Type Scales AP AP50 AP75

322 642 1282

Single-Scale
� 27.49 56.15 23.25

� 33.59 64.05 30.52

Multi-Scales

� � 34.03 64.86 31.66

� � 34.78 66.71 31.51

� � � 35.41 66.88 32.52

Table 11. Multi-scales experiment of TMR on RPINE. The gray-

shaded row indicates the default single-scale configuration de-

scribed in Sec. 4, where only a single feature scale is used. For

the single-scale setting, upscaling the feature map from 64 × 64
to 128 × 128 improves performance, as the resulting higher-

resolution correlation map enables denser predictions.

Multi-scale extension. TMR can be naturally extended to

multi-scale prediction by incorporating a multi-scale archi-

tecture, such as ViTDet [29]. Following a similar approach

to the few-shot extension in Sec. 4.3, we first extract fea-

ture maps at multiple scales and independently apply the

prediction process to each scale. The resulting predictions

are then aggregated and filtered using Non-Maximum Sup-

pression (NMS) to remove duplicates across scales. As

shown in Tab. 11, leveraging multi-scale features yields fur-

ther performance improvements, demonstrating the benefit

of scale-aware detection in capturing pattern instances of

varying sizes. For a fair comparison with prior state-of-the-

art methods [23, 52], we use the single-scale setting in all

experiments, except for the multi-scale experiment reported

in Tab. 11.

RPINE-edgeless. To evaluate the model under the min-

imal assumptions of the object-level edge prior, we aug-

ment the RPINE dataset via bounding box transformation.

Given a ground-truth bounding box, we apply eight types

of cropping-based transformations: left half, right half, top

half, bottom half, top-left corner, top-right corner, bottom-

left corner, and bottom-right corner, as illustrated in Fig. 15

(a). Based on this, we construct the RPINE-edgeless dataset

Ground truth box

Cropping-based transformations
(a) Example of cropping-based transformations

Exemplar and GT Predictions

(b) Qualitative results of TMR w/o SD on RPINE-edgeless dataset
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Figure 15. RPINE-edgeless examples.

Method SD AP(↑) AP50(↑) AP75(↑)

GeCo [52] � 12.53 30.96 8.55

TMR (ours) 33.25 67.63 28.22
TMR (ours) � 17.99 46.31 10.89

Table 12. One-shot pattern detection results on the RPINE-

edgeless dataset.

(Fig. 15 (b)), which contains 13,772 training samples and

1,402 validation samples. As shown in Tab. 12, we com-

pare TMR with GeCo, and TMR demonstrates strong per-

formance. However, we also observe that when using SD,

the performance drops significantly, which aligns with our

claim in Sec. 6.4.

10. Future work

Rotation invariance. Although TMR effectively handles

scale variations, achieving rotation invariance remains a

challenging problem, as observed in prior approaches as

well [23, 52]. This limitation could be further mitigated

by incorporating rotation-invariant data augmentation or



adopting rotation-equivariant architectures [4, 54].

Applications. The proposed template-matching based de-

tection framework is potentially useful for detecting low-

semantic, user-defined patterns. One interdisciplinary ap-

plication is flow cytometry [13, 53], which analyzes the

physical and chemical characteristics of cell or particle pop-

ulations [3, 41], such as in cell counting tasks. Since repet-

itive patterns are a fundamental component of many natu-

ral and artificial structures [10, 27], the framework could

be extended to broader applications in real-world settings,

such as agricultural or industrial vision. A thorough inves-

tigation of these directions is beyond the scope of this study

and is left for future work.



Figure 16. Additional qualitative results on the FSCD-LVIS dataset.



Figure 17. Additional qualitative results on the FSCD-147 dataset.



Figure 18. Additional qualitative results on the RPINE dataset.


