Generative Adversarial Diffusion

Supplementary Material

6. Convergence and Stability Analysis

In this section, we present a comprehensive analysis of
the convergence behavior and stability of three generative
frameworks to validate the effectiveness and generalizabil-
ity of our proposed method: the baseline diffusion model,
the diffusion model with GAN, and our proposed Gener-
ative Adversarial Diffusion (GAD). We employed Stable
diffusion [38] as the baseline diffusion model, while we
adopted Diffusion-GAN [52] as a diffusion model com-
bined with GAN. Diffusion-GAN introduces a separate dis-
criminator into the denoising process of the diffusion model
[38] and alternates training between the diffusion model
(i.e., the U-Net) and the discriminator. In contrast, our pro-
posed method employs a unified network for both the gen-
erator and discriminator, thus reducing the need for alter-
nating updates and potentially shortening training time. For
a fair comparison, both Diffusion-GAN and our method use
the denoising process of Stable diffusion as the generator
and are trained on the same subset of ImageNet [12] dataset.

Following related work [38, 61], we use the Fréchet In-
ception Distance (FID) [18] as a function of the training
steps to measure the convergence speed and training stabil-
ity. All models were trained under identical conditions (i.e.,
with the same number of training steps and comparable net-
work parameters) to allow a direct comparison.

Figure 6 shows the sample quality and changes in FID
over the 2M training steps. Notably, after around 1.25M
steps, Diffusion-GAN’s FID begins to diverge, suggesting
that its alternating generator-discriminator updates struggle
to capture the complex and diverse distribution of the Im-
ageNet dataset. These results highlight the structural limi-
tations of GAN-based approaches, where the generator and
discriminator are trained alternately in an unstable manner,
often leading to issues such as mode collapse due to imbal-
anced or oscillatory updates between the two networks.

In contrast, the baseline diffusion method (i.e., Sta-
ble diffusion) maintains stable convergence throughout the
training, yet converges more slowly and finally achieves
a higher FID than the proposed method. The proposed
GAD efficiently leverages the U-Net as a unified generator
and discriminator, applying adversarial constraints directly
within the diffusion process. This key concept enables GAD
to combine the stable convergence of diffusion models with
high-resolution generation capabilities commonly associ-
ated with GANs, without resorting to alternating updates.
Furthermore, the faster convergence of the GAD compared
to the baselines indicates that the adversarial loss acts as a
regularizer, guiding the diffusion process toward improved
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Figure 6. Convergence and stability analysis.

sample quality in fewer training steps.

In general, these findings demonstrate the structural sta-
bility and robust performance of our proposed GAD frame-
work on a large-scale and challenging dataset. By unifying
the generator and discriminator in a single U-Net architec-
ture, our method achieves high-fidelity, high-resolution im-
age generation while maintaining stable training dynamics.

7. Discussion on Adversarial Margin m

In our experiments, we set the margin m by performing in-
ference on the training set every 5 epochs and computing the
average error. Furthermore, we explored the effect of vary-
ing m by adjusting it by £10% to assess the sensitivity of
our method to changes in the margin value. Our results indi-
cated that these slight modifications did not lead to any sta-
tistically significant differences in performance. This out-
come confirms that our adaptive margin setting strategy is
both robust and well-calibrated, ensuring that the adversar-
ial regularizer maintains a meaningful separation between
the predicted noise of real and fake latents throughout train-
ing. Consequently, this design choice contributes to the sta-
bility and convergence of our GAD.

From a decision-theoretic standpoint, the optimal esti-
mator is the conditional mean under a squared error loss
function [22]. In other words, the mean minimizes the ex-
pected squared error (i.e., it is the Bayes estimator under
squared loss). By choosing the average error computed
from the training set as the margin m, we effectively set
a threshold that reflects the central tendency of the error
distribution observed during training. This adaptive choice
is theoretically justified because it provides a balanced and
statistically grounded criterion that neither overestimates



Table 4. Comparisons with respect to A\qq, values.

Aadv FID (1) CLIP score (1)
0.05 11.01 0.3142
0.01 9.71 0.3468
0.005 12.98 0.3195

nor underestimates the typical error. Consequently, this
method of selecting m aligns with classical results in es-
timation theory and further supports our approach to cali-
brating the adversarial regularizer.

8. Sensitivity Analysis of Parameter \,;,

In this section, we analyze the sensitivity of our method
with respect to the adversarial regularization weight A4, on
the text-to-image generation task using the ImageNet [12]
dataset. We evaluated generation quality by measuring both
the FID [18] and CLIP score [36], following the experimen-
tal setup described in Sec. 4.2.1.

We conducted experiments with three different values of
Aadv: 0.05, 0.01, and 0.005. In particular, our quantita-
tive results, summarized in Table 4, show that .4, = 0.01
gives the best empirical performance on the text-to-image
generation task. Furthermore, similar performance trends
were observed in experiments on conditional text-to-image
generation and 2D-to-3D generation, indicating that the op-
timal value of \,4, remains consistent across different gen-
eration tasks. While additional values of A,q4, were also in-
vestigated during preliminary experiments, these three set-
tings clearly illustrate that \,4, = 0.01 is the most suitable
choice.

In our framework, the adversarial regularization weight
Aady balances the standard denoising objective L;q,, with
the adversarial regularizer L,q4,, which enforces a margin
between the predicted noise for real and fake latents. If A, g4,
is set too high, the adversarial term can dominate the overall
objective, forcing the predicted noise to deviate excessively
from the true noise in order to maintain the prescribed mar-
gin, and thereby degrading the model’s denoising perfor-
mance. Conversely, if A4, is too low, the adversarial reg-
ularizer has minimal effect, and the model behaves almost
like a pure diffusion approach, missing out on the benefits
of adversarial regularization.

As shown in Table 4, setting A\,q, = 0.01 provides an
optimal balance between these extremes, ensuring both sta-
ble convergence and strong generative performance for our
GAD framework. This balanced setting maintains a mean-
ingful separation between the predicted noise of real and
fake latents, ultimately contributing to robust training and
improved generation quality.

Table 5. Comparisons with GAN loss variants.

Loss Type FID (})
Vanilla GAN 9.11
Non-saturated GAN 8.57
Wasserstein GAN 7.91
Energy-based GAN (ours) 7.08

9. Comparison with GAN Loss Variants

In this section, we analyze the impact of the proposed
energy-based adversarial regularizer by replacing it with
different GAN loss formulations. Specifically, we compare
Vanilla GAN [54], Non-saturating GAN [40], Wasserstein
GAN [4], and our Energy-based GAN [63] loss on the text-
to-image generation task using the ImageNet [12] dataset.
To evaluate generation quality,we measure the FID [18],
following the experimental setup described in Sec. 4.2.1.

Since our framework is based on noise prediction in la-
tent space, we adapt scalar-based GAN losses to this setting
by computing a similarity signal between the predicted and
ground-truth noise vectors. In particular, we apply a sig-
moid function for BCE-style objectives, while for Wasser-
stein GAN we use the cosine similarity between noise vec-
tors as a surrogate signal.

As shown in Table 5, our margin-based energy formu-
lation achieves the best performance. These results demon-
strate that the energy-based adversarial term in the proposed
method enforces directional and scale-aware separation be-
tween predicted and ground-truth noise.

10. Additional Qualitative Comparisons

Due to page limitations of the main manuscript, we provide
additional qualitative comparisons in this supplemental ma-
terial to further validate the effectiveness of our proposed
method across various generative tasks. These results ex-
pand upon the main comparisons presented in Sec. 4.2 of
the main paper.

10.1. Text-to-Image Generation

Figure 7 presents additional results for the text-to-image
generation task, comparing our method with Stable diffu-
sion [38], as discussed in Sec. 4.2.1. The results consis-
tently demonstrate that our method generates images with
significantly higher quality and improved detail fidelity.

In particular, in Figs. 7 (a), (b), (e), (g), (1), and (m),
the proposed method depicts human body shapes and fa-
cial features with more natural and detailed high-frequency
information than the Stable diffusion baseline. Moreover,
our method demonstrates superior capability in faithfully
generating images based on complex textual descriptions.
As shown in Figs. 7 (b), (d), and (o), the proposed method



accurately captures and integrates multiple elements from
the text prompt. For example, in Fig. 7 (b), the terms “red
chair” and “a book™ are clearly represented in the generated
image, while in Fig. 7 (d), elements such as “three men”
and “a shack” are distinctly incorporated. In Fig. 7 (0), the
generated image more accurately represents “a dog wear-
ing a red number 6” in contrast to the baseline, where these
details are either missing or visually ambiguous.

Additionally, our method consistently produces sharper
and more vivid images across various artistic styles, includ-
ing watercolor paintings, animations, and digital paintings.
As demonstrated in Figs. 7 (b), (c), (i), (k), and (n), the
proposed method enhances the clarity of the image and the
overall visual appeal. Notably, in Fig. 7 (c), the fine de-
tails of the “mushroom” and the “soft rays of sunlight fil-
tering through the trees” are captured more vividly com-
pared to the baseline. Similarly, in Fig. 7 (n), the depic-
tion of “snowflakes” falling around the fox is significantly
more refined, reinforcing the ability of our model to gen-
erate high-quality outputs with a better representation of
scene elements.

The improvements become particularly prominent when
dealing with complex captions, where multiple objects and
intricate relationships need to be rendered accurately. As
evidenced in Figs. 7 (c) and (n), our method preserves es-
sential elements such as “mushroom” and “sunlight” in (c)
and “snowflakes” in (n), which the baseline often does not
represent accurately. These findings confirm that incorpo-
rating GAD into the diffusion model not only enhances the
overall quality and realism of generated images, but also
improves text fidelity by capturing fine details more effec-
tively. The combination of adversarial regularization and
diffusion preserves stable denoising performance while si-
multaneously increasing image sharpness and consistency
with textual descriptions.

10.2. Conditional Text-to-Image Generation

Figure 8 extends the comparison with GLIGEN [26] for
the conditional text-to-image generation task, complement-
ing the results shown in Sec. 4.2.2. Our proposed method
demonstrates improved performance in accurately gener-
ating images that align with the given bounding box con-
straints while maintaining high visual quality.

Specifically, in Fig. 8 (a), the proposed method ensures
that the objects corresponding to “towering buildings” and
“crowded street” are not only correctly positioned within
the bounding boxes but also generated with greater struc-
tural fidelity. Similarly, in Fig. 8 (b), our method cor-
rectly preserves the spatial arrangement of “a lighthouse”
and “a small boat,” ensuring that both elements are placed
appropriately while maintaining a realistic representation
of their forms. These results highlight the improved spa-
tial consistency and semantic alignment achieved by in-

corporating GAD. Moreover, in Figs. 8 (d) and (e), the
proposed method effectively integrates textual descriptions
with bounding box constraints, producing images that ap-
pear more natural and visually coherent.

While both methods, including the standard GLIGEN,
successfully incorporate the caption details, our approach
further ensures that the generated content within the bound-
ing boxes is not only spatially accurate but also naturally
structured. This is particularly evident in the case of “a per-
son” in Figs. 8 (d), where the proposed method generates
an image with realistic proportions and natural posture, un-
like the baseline, which often struggles with distorted body
structures. These findings indicate that our method signifi-
cantly enhances the model’s ability to simultaneously learn
and enforce textual and spatial constraints, thereby improv-
ing the realism and usability of conditional text-to-image
generation.

Figure 9 presents additional qualitative comparisons be-
tween our method and the standard Textual Inversion [16].
Our proposed method demonstrates a stronger ability to
learn new concepts efficiently from a limited dataset while
maintaining flexibility in combining various caption styles.

In particular, when generating objects with intricate pat-
terns or geometric structures, our method consistently cap-
tures fine details without overfitting to the training samples.
For instance, in Figs. 9 (d), (e), and (f), the proposed method
effectively integrates complex teapot patterns with diverse
caption prompts, producing visually distinct images that re-
main faithful to the given text. In contrast, the standard Tex-
tual Inversion method exhibits overfitting, generating nearly
identical teapot-like images regardless of whether the cap-
tions specify “mug cup” or “T-shirt,” as shown in Figs. 9 (d)
and (f). This demonstrates that our approach prevents ex-
cessive reliance on the initial training patterns and instead
generalizes better to diverse styles.

Furthermore, Figs. 9 (j), (k), and (1) further highlight
these differences when dealing with structurally intricate
objects. Our method effectively learns and applies detailed
patterns, such as the intricate textures of an “elephant”, al-
lowing it to synthesize a high-quality “dragon” in Fig. 9
(1) that accurately reflects the caption while maintaining the
learned visual characteristics. The standard Textual Inver-
sion method, on the other hand, struggles to incorporate the
new semantic elements and tends to generate less diversified
outputs.

In addition, as shown in Figs. 9 (b), (g), and (h), our
method achieves more stable learning, leading to image
generations that align more accurately with the intended
textual descriptions. Specifically, Fig. 9 (b) demonstrates
a precise representation of “green clothes,” Fig. 9 (g) cor-
rectly places the object “in the forest,” and Fig. 9 (h) faith-
fully illustrates “on stacks of paper,” all of which are better
captured by our method compared to the standard approach.



These results collectively demonstrate that integrating
GAD into conditional diffusion models mitigates overfitting
while enhancing the model’s ability to capture both textual
and visual conditioning. By efficiently balancing generative
flexibility and concept preservation, the proposed method
produces high-quality images that remain faithful to both
the textual prompts and the learned representations.

10.3. 2D-to-3D Generation

For the 2D-to-3D generation task, Figure 10 presents sup-
plementary results that compare our method with Sync-
Dreamer [28], as detailed in Sec. 4.2.3. The results fur-
ther show that our method not only synthesizes high-quality
novel views but also maintains improved multi-view consis-
tency compared to the baseline method.

For instance, in the first row of Fig. 10, our method ac-
curately captures fine details such as bullet casings while
preserving the correct gun barrel orientation and quantity.
In contrast, the standard SyncDreamer method produces ar-
tifacts and struggles to maintain the structural integrity of
these components across views.

This performance gap becomes even more apparent
when dealing with complex objects. In the second row,
which depicts a gauntlet, our approach significantly outper-
forms the standard SyncDreamer by preserving the detailed
shape of the fingers and maintaining material consistency
across all views. The baseline method, on the other hand,
struggles to maintain structural coherence, often distorting
the shape of the hand from certain perspectives.

Moreover, as observed in the third row, the baseline
method exhibits difficulties in correctly distinguishing the
front and rear of a car, leading to shape inconsistencies in
side views. In contrast, the proposed method effectively
learns the object’s geometric structure, ensuring coherent
and well-preserved forms across all generated views.

Furthermore, Figure 11 shows additional qualitative
comparisons with Era3D [24], further validating the effec-
tiveness of our approach. The results highlight that our
proposed method consistently captures higher-frequency
details and preserves structural integrity across multiple
views.

For example, in the first row of Fig. 1 1, our method accu-
rately learns the complex object structure and multi-colored
blocks at various spatial positions, ensuring consistent novel
view synthesis across all angles. Additionally, our approach
effectively refines object boundaries and color transitions
during multi-view transformations, reducing artifacts com-
monly observed in the baseline method.

In particular, in the second column of Fig. 11, our
method demonstrates greater robustness in preserving pla-
nar objects, such as teapots, ensuring structural consistency
between different viewpoints. The baseline method, in con-
trast, exhibits distortions and inconsistencies when generat-

ing certain angles.

Similarly, in the third column of Fig. 11, the proposed
method eliminates color boundary artifacts that frequently
arise in the baseline method when synthesizing multiple
views. This improvement suggests that our adversarial
training strategy efficiently mitigates multi-view inconsis-
tencies, leading to more stable and coherent multi-view syn-
thesis.

These additional qualitative results reinforce the findings
presented in the main manuscript by further demonstrating
the robustness and generalizability of our proposed method
across diverse generative tasks.

11. Theoretical Foundations of GAD

In this section, we outline a simplified theoretical argument
showing how the proposed loss Lgqq(0) = Liam(0) +
Lody(0) can act as a regularizer to encourage a margin-
based separation between real and fake samples in the latent
diffusion framework.

11.1. Problem Setup and Notation

Let 6 be the parameters of our shared U-Net eg(-,t). We
define the following two terms:

lem(e) = Ezo«,fwe |:H€ - 59(\/67820 + V1 — aye, t)”] y
Laan(8) = IEZOJ‘,E[[m — He(g(\/o’tho +V1—ae, t) — 5||]+],

where [-]; = max(0, -) and m > 0 is a positive margin.

Interpretation.

* Li4m(0) is the standard latent diffusion objective, which
encourages ¢y to predict the noise €y accurately.

* La4,(0) imposes a penalty whenever the predicted noise
and the true noise are ‘too close’ (i.e., within distance
m). Hence, it effectively enforces the separation between
‘real’ noisy latents and ‘fake’ (denoised) latents.

We consider the overall objective

Lgad(o) - lem(o) + Ladv(o)~

Minimizing L 4,q(f) balances the primary denoising objec-
tive with a margin-based adversarial constraint.

11.2. Theoretical Analysis
Theorem 1 (Margin-based Separation). Suppose 6* is a

global minimizer of Lgqq(8) = Ligm(0) + Laav(0). Let
Dy(z) = ||€9(Z) —e||

denote the noise-prediction discrepancy at some perturbed

latent z (where, for brevity, z = \/ai 2o + /1 — az €). If m



is chosen such that the training data covers noise scales up
to m, then under mild continuity assumptions on €y,

Dy« (z) > m  for almost all fake latents z.

In other words, the distance between the fake latents’ pre-
dicted noise and the true noise is encouraged to exceed m
whenever it is beneficial to minimize Lgqq.

Proof. Let 6* be a global minimizer of L4,4(6). By defini-
tion,

Lgad(e*) = Hlain{[’ldwt(o)_"Ladv(G)}-

Suppose, for the sake of contradiction, there exists a set
of latent variables Z (of non-negligible measure) such that
for any z € Z, we have Dy« (2) = ||eg= (2) — €]| < m.

Since [m — Dp-(2)], > 0 whenever Dp-(z) < m,
these latents would contribute a strictly positive penalty to
Ladv(a*)-

However, because 0* is a global minimizer, if there
is a simple parameter perturbation 66 such that increases
Dy« (z) (so that Dg«1s9(2z) > m) without significantly
increasing L4, then Lgq, would decrease (since [m —
Dg+y50(2)]+ = 0 when Dy« y50(z) > m), leading to a
lower overall cost.

Under mild smoothness assumptions on €y and the fact
that the margin penalty [m — x|, is subdifferentiable almost
everywhere, it is generally possible for the model to adjust
the parameters so as to increase Dy(z) to at least m (espe-
cially for ‘fake’ latents that do not strongly affect real data
reconstruction). Hence, retaining latents with Dy~ (z) < m
would not minimize the objective unless it concurrently and
significantly lowered L;q,.

Therefore, in equilibrium, we must have Dg«(z) > m
for almost all relevant fake latents z, otherwise the penalty
in L,g, could be further reduced. This shows that the
margin-based term enforces a separation condition in the
global minimizer 6*. O

Remarks.

* This result indicates that once the model finds parameters
0* that minimize Lg4,4, any fake latent noise whose pre-
dicted noise is too close to the true noise (i.e., within the
margin m) will incur a penalty. Consequently, the model
is incentivized to maintain or even increase the gap be-
tween predicted and true noise, provided that doing so
does not significantly deteriorate Ly, .

* In practice, if Agqq, (from the formulation Lgqq = Ligm +
Aadv Ladv) 1s appropriately tuned, the model can balance
accurate noise prediction with the enforcement of a mar-
gin. This balance ensures that the network both recon-
structs noise effectively (yielding good diffusion perfor-
mance) and preserves sufficient separation between fake
and real latents.

* Although Theorem | guarantees a global separation prop-
erty, real-world training typically converges to local min-
ima or saddle points. Nevertheless, the margin penalty
acts as a stabilizer by providing a practical mechanism to
push fake latents away from the real ones, thus improving
the convergence of the training and overall stability.

11.3. Mode Collapse and Convergence

Theorem | provides a simplified insight: By adding L4, to
the overall objective, the model is encouraged to maintain
a margin between real and fake latents. This can mitigate
mode collapse, as the generator (i.e., U-Net) cannot trivially
assign every latent value to a small cluster around the real
noise values, i.e. doing so would produce a large penalty
from L.

Moreover, the diffusion objective L;q4y, is still preserved,
ensuring that ey learns to denoise effectively. In combina-
tion, these two goals can help training converge more stably
in practice, even though a complete global-optimality proof
(i.e., covering all aspects of GAN and diffusion) is beyond
the scope of this simplified analysis.
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Figure 7. Additional qualitative comparisons with Stable diffusion.
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Figure 9. Additional qualitative comparisons with Textual Inversion.
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