
Supplementary Materials: Details Matter for Indoor Open-vocabulary 3D
Instance Segmentation

1. Algorithm on 3D Proposal Merge and Re-
finement

We present a more detailed algorithm for merging and refin-
ing 3D proposals in Alg. 1. This algorithm refines and con-
solidates a list of tracklets and their associated 3D propos-
als. It iteratively evaluates the pairwise similarity of propos-
als using an Intersection-over-Union (IOU) cost matrix and
merges those exceeding a defined similarity threshold. Dur-
ing merging, the 3D points and corresponding tracklets are
combined, followed by a refinement step that removes low-
visibility 3D superpoints from the merged proposal based
on their visibility in the tracked 2D masks. A dynamic va-
lidity list tracks unmerged proposals and is updated after
each merge iteration. The process continues until no pro-
posals meet the merging criteria. This iterative method ef-
fectively consolidates overlapping proposals, enhancing the
overall accuracy and coherence of 3D proposals.

2. More Implementation Details
We leverage Alpha-CLIP [10] with SAM [6] for instance
classification based on text queries. For the ScanNet200 and
Replica datasets, we use instance bounding boxes as queries
for mask retrieval from SAM, while for the S3DIS dataset,
we utilize subsampled points. This choice is driven by the
presence of “stuff” classes in S3DIS, where subsampled
points introduce less noise compared to bounding boxes.
For proposal filtering, we adopt different SMS thresholds
(τSMS) tailored to each experiment. Performance remains
stable within a reasonable range (τSMS ∈ [−1.0, 1.0]), cor-
responding to a standard deviation range, as elaborated in
Sec. 4.1. For instance classification, we select the top 20
visible images for ScanNet200 and Replica and the top 40
images for S3DIS. Following OpenMask3D [11], we use a
confidence value of 1.0 to evaluate Average Precision (AP)
and Average Recall (AR) metrics. The inference time for
our method on the Replica dataset is approximately 597
seconds per scene, closely matching the 547 seconds re-
ported for OpenMask3D [2, 11]. This similarity arises from
both methods utilizing SAM and CLIP for instance fea-
ture extraction. In our analysis, instance classification takes
up to around 456 seconds, which is 76% of the computa-
tional cost. All inference times were measured on a sin-
gle NVIDIA RTX 4090 GPU. Additionally, we employ a
text query template, “a blurry photo of {CLASS NAME} in
a room,” adapted from CLIP [8]. For Top-K evaluations,
we use K = 300 for 2D-only and 3D-only experiments,

Algorithm 1 3D Proposal Merge and Refinement

1: Input: A list of K tracklets {Tk}Kk=1 and associated 3D proposals
{mk}Kk=1, k = 1, 2, . . . ,K

2: Output: A list of filtered tracklets and 3D proposals
3:
4: K ← # of 3D proposals
5: m← [m1, . . . ,mK ] ∈ {0, 1}K×N

6: T← [T1, . . . ,TK ]
7: V ← [1, 2, . . . ,K] ▷ Initialize valid proposal indices
8: Cmerge ← getIoUCostMatrix(m)
9: should merge← Any(Cmerge > τmerge)

10: while should merge = True do
11: visited← hashmap ▷ Track visited proposals
12: for row r = 1, 2, . . . ,K do
13: if visited[r] = True then
14: continue
15: end if
16: for col c = 1, 2, . . . ,K do
17: if r = c or visited[c] or Cmerge[r, c] ≤ τmerge then
18: continue
19: end if
20: mr ←mr ∪mc ▷ Merge 3D proposals
21: Tr ← Tr ∪Tc ▷ Merge tracklets
22: mr ← refine3DProposal(mr,Tr) ▷ Refine 3D proposal
23: V ← V \ {c} ▷ Remove merged proposal
24: visited[c]← True
25: end for
26: visited[r]← True
27: end for
28: K ← length(V ) ▷ Update # of proposals
29: m← [mi1 , . . . ,miK ], ik ∈ V ▷ Update 3D proposal list
30: T← [Ti1 , . . . ,TiK ], ik ∈ V ▷ Update tracklet list
31: V ← [1, 2, . . . ,K] ▷ Re-initialize valid proposal indices
32: Cmerge ← getIoUCostMatrix(m)
33: should merge← Any(Cmerge > τmerge)
34: end while

and adopt K = 600 for 2D+3D experiments, following
Open3DIS. OpenYOLO3D adopted K = 600 for the 3D-
only experiment on the ScanNet200 dataset.

3. Analysis of Computational Cost

Fig. 1 presents the analysis of the impacts of various factors
on the computation time. We plot graphs to demonstrate the
correlation of 1) the number of points in the point cloud,
2) the number of image frames, 3) the number of instances,
and 4) the number of different semantic classes present in
the scene. At last, we show the stage-wise computation time
of our method. As shown, we can see meaningful corre-
lations between those factors and computation time. Also,
the 2D grounding step takes the longest computation time
in our method, followed by instance classification, 3D pro-
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Figure 1. Computation time analysis of various factors on the subset of ScanNet200 validation set.

posal aggregation, and iterative merging and removal.

4. Additional Experiments
This section presents additional quantitative and qualitative
results not included in the main paper.

4.1. Quantative Results
Class-agnostic Evaluation Results on ScanNet++ We fur-
ther evaluate our method on the ScanNet++ dataset. Unlike
other datasets, we only evaluate our image-based proposal
generation pipeline, excluding point cloud-based 3D pro-
posals. This is because we experience a non-trivial amount
of distributional gap when we apply 3D instance segmenta-
tion models trained on other datasets such as ScanNet200.
As reported in Table 1, our method demonstrates on-par
evaluation results on the AP metric with Open3DIS [7]
+ SAM for 2D object grounding. Under the same VFM
(Grounded SAM) for 2D grounding, our method shows bet-
ter performance in AP50 and AP25 by 1.7% and 3.7%, re-
spectively. SAI3D [14] presents superior results in the AP25

metric, surpassing all other methods by a large gap. We
found that our iterative merging/removal step does not con-
tribute to precise 3D proposal generation as much as it used
to in other datasets. We conjecture that this is because the
ScanNet++ dataset includes more small and fine objects that
may get removed by merging and removing overlapped and
included proposals. However, our method still maintains
reasonable performance, showing on-par results with SoTA
methods.
S3DIS Results Including “stuff” Classes. We present re-

Method AP AP50 AP25

SAM3D [12] 7.2 14.2 29.4
SAM-guided Graph Cut [4] 12.9 25.3 43.6

Segment3D [5] 12.0 22.7 37.8
SAI3D [14] 17.1 31.1 49.5

Open3DIS (G-SAM)† [7] 18.2 30.7 40.6
Open3DIS (SAM) [7] 18.5 33.5 44.3

Ours (2D Only) 18.2 32.4 44.3

Table 1. Class-agnostic evaluation on the ScanNet++
dataset [13]. †numbers are obtained from their official code.

sults that include ”stuff” classes—specifically floor, ceiling,
and wall—for evaluation. These classes were excluded from
the main paper’s evaluation, as our task focuses on seg-
menting instances, and the notion of instances hardly ap-
plies to those classes. As reported in Table 2, our method
consistently outperforms baselines in 2D-only and 2D+3D
groups. However, in the 3D-only group, our method falls
slightly behind OpenYOLO3D in the mAP50 and mAP25

metrics, primarily due to weaker performance on “stuff”
classes in these metrics. Nevertheless, our objective is to
improve performance on “thing” classes, which does not
necessarily correlate with gains on “stuff” classes. While
this gap could be addressed by incorporating panoptic seg-
mentation methods to handle both types of classes, such ex-
ploration is beyond the scope of this work. Importantly, our
method achieves SoTA results in all AR metrics across all
three groups.

Ablation Study on SMS filtering. Fig. 3 illustrates the ef-
fect of varying SMS filtering thresholds on the AP met-



Methods 3D Proposals mAP mAP50 mAP25 mAR mAR50 mAR25Image-based Point cloud-based

Open3DIS [7] ✓ ✗ 17.1 27.1 36.7 24.7 37.5 49.0
Ours (2D Only) ✓ ✗ 22.5 35.0 47.6 32.0 48.7 63.7

Open3DIS [7] ✗ ✓ 24.7 30.6 35.9 34.4 41.5 47.3
OpenYOLO3D [2] ✗ ✓ 37.4 49.4 56.9 45.6 56.6 62.6
Ours (3D Only) ✗ ✓ 37.4 46.6 54.7 47.5 57.2 64.6

Open3DIS [7] ✓ ✓ 27.8 33.9 39.3 44.8 53.6 60.6
Ours (2D + 3D) ✓ ✓ 33.5 42.4 47.9 53.6 66.0 72.7

Table 2. OV-3DIS results on the S3DIS dataset [1]. The numbers are obtained by using 12 classes, including stuff classes such as floor,
ceiling, and wall. Top-1 evaluation protocol is used.

Partial Proposal Wrong Proposal Noisy Proposal

Figure 2. Visualization of filtered proposals by using the Stan-
dardized Maximum Similarity (SMS) score. The SMS score ef-
fectively filters out partial proposals (e.g., only part of a sofa is
covered), incorrect proposals that do not match any text queries
(e.g., ”wall” class not included in the evaluation set), and noisy
proposals lacking meaningful object representation.

Figure 3. Impacts of varying SMS filtering thresholds on the
AP metric. The red line denotes the AP values across different
SMS filtering thresholds, and the blue line indicates AP without
using SMS filtering. The green vertical lines indicate a desirable
range of SMS filtering thresholds. The numbers are measured on
the Replica dataset.

ric using the Replica dataset. Within the standard deviation
range of [-1, 1], the variance remains minimal compared to
the outer ranges, with a maximum gap of only 0.4%. No-
tably, applying SMS filtering consistently outperforms the
baseline experiment conducted without filtering.
Impact of Hyper-parameters. Table 3 demonstrates the

τ img AP τ inst AP τ ref AP τmerge AP τ incl AP

0.0 26.4 0.0 28.0 0.0 33.5 0.1 36.1 0.5 36.3
0.1 35.1 0.1 33.9 0.2 34.0 0.3 35.1 0.7 35.6
0.3 27.9 0.3 35.1 0.4 35.1 0.5 33.6 0.9 35.0
0.5 16.2 0.5 29.9 0.6 33.8 0.7 33.0 0.99 35.1

Table 3. Impact of hyper-parameters on the subset of the Scan-
Net200 validation set. Class-agnostic APs are reported.

impacts of different hyper-parameter values on the gener-
ated 3D proposal quality. As reported, our algorithm is sen-
sitive to τ img and τ inst values because they are applied in
the first step of our generation and also provide the basis
for later operations. Nevertheless, our method remains less
sensitive to other hyper-parameters.
Alpha CLIP vs CLIP Table 4 demonstrates impacts of us-
ing Alpha-CLIP and SMS filtering for instance classifica-
tion. In all three datasets, using Alpha-CLIP brings mean-
ingful performance gains consistently across all datasets
and metrics. Applying SMS filtering further improves this,
achieving SoTA performance.

4.2. Qualitative Results
Qualitative Results with Dataset-Provided Text Queries.
We present more qualitative comparisons on the Scan-
Net200 dataset [3] in Figs. 4 and 5. As shown, both
Open3DIS and OpenYOLO3D fail to detect certain in-
stances, primarily due to missing image-based 3D propos-
als or incorrect instance classifications. In contrast, our
method not only generates accurate proposals but also clas-
sifies them correctly. Open3DIS, in particular, occasionally
misidentifies the “floor” as an instance (see third/fourth and
fourth rows of Figs. 4 and 5, respectively), reflecting im-
perfections in their image-based proposal generation. We
also provide qualitative results on the S3DIS and Replica
datasets in Fig. 6, demonstrating that our method accu-
rately retrieves most proposals, with only a few instances
missed. We attribute these missed instances to either the
domain gap between real-world data and the synthetic data
from Replica or the training nature of CLIP, which empha-
sizes foreground regions over background elements such as



Dataset Method mAP mAP50 mAP25 mAR mAR50 mAR25

ScanNet200
Ours w/ CLIP 27.5 34.7 38.2 52.4 65.6 71.8
+ Alpha-CLIP 30.5 (+3.0) 37.6 (+2.9) 41.1 (+2.9) 57.6 (+5.2) 70.5 (+4.9) 76.5 (+4.7)
+ SMS Filtering 32.7 (+5.2) 41.4 (+6.7) 45.3 (+7.1) 61.4 (+9.0) 76.9 (+11.3) 83.5 (+11.7)

Replica
Ours w/ CLIP 22.4 30.0 35.6 42.8 57.1 67.7
+ Alpha-CLIP 25.1 (+2.7) 33.7 (+3.7) 41.7 (+6.1) 47.6 (+4.8) 63.8 (+6.7) 78.0 (+10.3)
+ SMS Filtering 25.7 (+3.3) 34.9 (+4.9) 42.3 (+6.7) 48.8 (+6.0) 66.3 (+9.2) 79.7 (+12.0)

S3DIS
Ours w/ CLIP 29.4 39.9 45.4 45.4 60.5 67.2
+ Alpha-CLIP 31.0 (+1.6) 43.1 (+3.2) 49.9 (+4.5) 47.9 (+2.5) 64.7 (+4.2) 72.5 (+5.3)
+ SMS Filtering 31.3 (+1.9) 43.5 (+3.6) 50.4 (+5.0) 48.2 (+2.8) 65.1 (+4.6) 72.9 (+5.7)

Table 4. Impact of Alpha-CLIP in instance classification on the ScanNet200, Replica, and S3DIS datasets.

floors, ceilings, walls, and columns. Also, in the case of
S3DIS, some instances have incomplete masks for large ob-
jects, which could be a side effect of our refinements. This
is the limitation of our method, and solving this problem
remains our future work.
Qualitative Results with the New Text Queries. We vi-
sualize more examples of OV-3DIS using new text queries
on the ScanNet200 dataset in Fig. 7. Our method success-
fully retrieves corresponding instances based on functional
descriptions and object attributes such as color, brand name,
and other features.



Ground Truth Open3DIS OpenYOLO3D Ours

Figure 4. Exteneded qualitative comparisons on the ScanNet200 dataset. Black regions indicate empty predictions (no object), while
red boxes highlight objects missed by other methods but successfully detected by ours. 3D instance masks are colored randomly.



Ground Truth Open3DIS OursOpenYOLO3D

Figure 5. Exteneded qualitative comparisons on the ScanNet200 dataset. Black regions indicate empty predictions (no object), while
red boxes highlight objects missed by other methods but successfully detected by ours. 3D instance masks are colored randomly.

Ground Truth Ours OursGround Truth

Figure 6. Qualitative results of our method on the Replica [9] (left) and S3DIS [1] (right) datasets. Black regions indicate empty
predictions (no object). 3D instance masks are colored randomly.
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Pack for travel
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Listen to music

Figure 7. Exteneded OV-3DIS results with new text queries on the ScanNet200 dataset. Our method effectively retrieves instances
based on functional descriptions and object attributes.
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