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Supplementary Material

A. Additional Visual Analysis
In this section, we describe additional visual analyses that
were not covered in detail in Section 4.6 of the main pa-
per. Specifically, we provide experimental validation of our
method using PCA-based visualizations.

A.1. Feature Orthogonal Decomposition
For PCA analysis and visualization, we calculate the 2D
principal components based on the source dataset (training
data) which indicates the (seen) domains. The target dataset
(test data) which indicates the (unseen) domains is then pro-
jected onto these 2D principal components. Finally, we vi-
sualize the features of the source and target datasets pro-
jected onto the derived principal components.

As shown in Fig. A-(a), (b), (c), and (d), all cases demon-
strate strong learning consistency. However, there are some
mismatches between the domain-separable feature space
and the decision boundary, indicating that they are not par-
allel to each other. Specifically, Fig. A-(b) exhibits little
skewed decision boundary in the Idaip domain, (c) in the
CASIA domain, and (d) in the MSU domain. Referring to
Tab 1 in the main paper, the alignment quality correlates
with the HTER scores. The most aligned case, (a), achieves
the lowest HTER of 0.42, followed by (b) with 0.93, (d)
with 2.64, and finally, (c), which has the highest HTER of
3.33.

Moreover, Fig. A-(e), (f), (g), and (h) further confirm
that better alignment quality enhances the alignment of the
domain-specific separable space in the target dataset.

This analysis validates that aligning the domain-specific
feature space with the decision boundary significantly con-
tributes to improving domain generality.

A.2. Decomposition into Invariant and Specific Fea-
tures

For PCA analysis and visualization, we conduct the 2D
principal components analysis for invariant features which
are projected onto the invariant basis features. The invariant
basis features are driven by Gram-Schmidt process [1]. Spe-
cific features are then obtained by subtracting the invariant
features from the original features. Finally, we visualize the
invariant features and specific features separately to analyze
their behavior.

The domain-invariant features should demonstrate that
they are challenging to distinguish across different domains.
In Fig. B-(a), (b), (c), and (d), this is evident as the liveness
features are difficult to associate with specific domains. In

contrast, spoofness features show some level of domain sep-
arability. This might be from the fact that liveness typically
represents a single characteristic, while spoofness encom-
passes a variety of attack types, such as print attacks, video
attacks, and partial attacks. However, they still prove their
invariance to domains.

Specific features, on the other hand, should neither
clearly distinguish spoofness from liveness nor differentiate
between domains, as they are unrelated to domain invari-
ance. Moreover, since they are projected onto the principal
components of domain-invariant features, domain separa-
bility should also be minimal. As expected, Fig. B-(e), (f),
(g), and (h) depict indistinct patterns, where neither spoof-
ness nor domain information can be identified.

The overall visualizations confirm that our method effec-
tively and explicitly decomposes domain-invariant compo-
nents from domain-specific components, achieving the in-
tended decomposition.

A.3. 3D visualization
We aim to intuitively examine the domain-invariant and
domain-specific components. To achieve this, we further
conduct 3D principal components analysis and project the
features onto them for visualization, as shown in Fig. C. In
the figure, the x-axis refers to the horizontal axis when the
sphere is viewed from the front. Accordingly, at 0º on the
x-axis, the domain-invariant components are highlighted; at
90º, the domain-specific components are emphasized; and
at 40º, both components are visible. Additionally, the seen
visualization represents data from the training set, while
the unseen visualization includes both target and training
datasets.

As proposed in Sec. A.1, Fig. C (seen, 0º) demon-
strates that learning consistency is well-aligned. Further-
more, as discussed in Sec A.2, Fig. C (seen, 90º) shows
that the domain-specific components can distinguish do-
mains but cannot differentiate between liveness and spoof-
ness. These results confirm that the domain-invariant and
domain-specific components are effectively and explicitly
separated. We also provide 3D visualized GIF images, in-
cluding ours, FLIP, and SAFAS.

B. Model Reliability
Regardless of how advanced AI models become, the im-
plementation of fundamental safety mechanisms remains
essential for their deployment in real-world scenarios, par-
ticularly within security systems. This necessity arises be-



(a) OCI→M (seen)

(e) OCI→M (unseen)

(b) OMI→C (seen)

(f) OMI→C (unseen)

(c) OCM→I (seen)

(g) OCM→I (unseen)

(d) ICM→O (seen)

(h) ICM→O (unseen)

Figure A. Visual analysis: 2D PCA Visualization across domains. The term (seen) refers to the training dataset, while (unseen) refers
to the target dataset that was not encountered during training. ◦ and × represent liveness and spoofness, respectively. The datasets are
represented as follows: ◦,×: CASIA, ◦,×: Idaip Replay-Attack, ◦,×: MSU-MFSD, ◦,×: OULU-NPU.

(a) OCI (Invariant)

(e) OCI (Specific)

(b) OMI (Invariant)

(f) OMI (Specific)

(c) OCM (Invariant)

(g) OCM (Specific)

(d) ICM (Invariant)

(h) ICM (Specific)

Figure B. Decomposition into invariance and specificity for domain: 2D PCA Visualization across domains. The term (Invariant) refers
to features projected onto the invariant space, while (specific) refers to features projected onto the domain-specific separable space. ◦ and
× represent liveness and spoofness, respectively. The datasets are represented as follows: ◦,×: CASIA, ◦,×: Idaip Replay-Attack, ◦,×:
MSU-MFSD, ◦,×: OULU-NPU.



(a) OCI→M

unseen 0º seen 0º seen 40º seen 90º unseen 90º

(b) OMI→C

unseen 0º seen 0º seen 40º seen 90º unseen 90º

(c) OCM→I

unseen 0º seen 0º seen 40º seen 90º unseen 90º

(d) ICM→O

unseen 0º seen 0º seen 40º seen 90º unseen 90º

Figure C. 3D visualization projected on sphere: PCA 3D Visualization across domains. The terms (0º), (40º), and (90º) represent the
angles of rotation about the vertical axis. ◦ and × represent liveness and spoofness, respectively. The datasets are represented as follows:
◦,×: CASIA, ◦,×: Idaip Replay-Attack, ◦,×: MSU-MFSD, ◦,×: OULU-NPU.
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(c) Ours (uncalibration)

(f) Ours (calibration)

Confidence
(b) FLIP (uncalibration)

(e) FLIP (calibration)

Confidence
(a) SAFAS (uncalibration)

(d) SAFAS (calibration)
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Figure D. Reliable Diagram: Comparison with Previous Methods. The terms (uncalibration) and (calibration) are distinguished based on
whether the uncertainty has been calibrated.

Methods C→I C→M C→O I→C I→M I→O M→C M→I M→O O→C O→I O→M
FLIP-MCL† [10] 10.57 7.15 3.91 0.68 7.22 4.22 0.19 5.88 3.95 0.19 5.69 8.40

BUDoPT† [9] 4.33 2.62 4.98 0.48 1.83 4.14 0.00 2.45 1.87 0.44 2.53 1.43
TF-FAS† [11] 3.06 1.59 3.78 0.69 1.34 2.50 0.11 2.31 1.40 1.5 4.02 1.59

GD-FAS† 2.98 3.92 3.36 0.19 2.50 3.36 0.00 2.23 2.59 0.00 1.83 0.42

Table A. Leave-three-domains-out protocol: † indicates the use of an extra source dataset (CelebA-Spoof [13]]).

cause model reliability is often expressed through the prob-
ability values associated with predictions; however, recent
AI models have demonstrated a tendency toward overcon-
fidence [5]. Unfortunately, this critical aspect has been
largely overlooked in prior studies.

In this section, we aim to underscore the importance of
model reliability and delineate how our approach differs
from previous methods by discussing the Expected Calibra-
tion Error (ECE) and the reliability diagrams introduced in
Sec 4.1 of this paper.

A reliability diagram is an analytical tool that visually
displays the discrepancy between predicted probability val-
ues and the actual probabilities. We conduct a visual analy-

sis of the dataset both with and without uncertainty calibra-
tion, utilizing a post-hoc uncertainty calibration method that
employs the temperature scaling technique. For this pur-
pose, we split the test dataset into a validation set and a test
set with a 2:8 ratio. The validation set is used to calibrate
the reliability, while the test set is used to evaluate.

As shown in Fig. D, our method maintains a slightly
overconfident state, whereas FLIP is significantly overcon-
fident and, conversely, SAFAS is underconfident. In the cal-
ibrated diagrams below, the slightly under and overconfi-
dent regions are notably reduced. Here, we observe that our
method before calibration outperforms other methods even
after calibration.



Methods SSAN-R [12] SSDG-R [7] DGUA-FAS [6] BUDoPT [9] GD-FAS

MI→C HTER 25.56 19.86 19.22 5.33 2.22
AUC 83.89 86.46 86.81 98.92 99.15

MI→O HTER 24.44 27.92 20.05 5.94 3.75
AUC 82.86 78.72 88.75 98.37 98.75

Table B. Leave-two-domains-out protocol

Methods CS→W SW→C CW→S Average
HTER AUC HTER AUC HTER AUC HTER AUC

FLIP-MCL† [10] 4.46 99.16 9.66 96.69 11.71 95.21 8.61 97.02
CFPL† [8] 4.40 99.11 8.13 96.70 8.50 97.00 7.01 97.60
GD-FAS† 7.88 97.60 4.01 98.59 5.87 98.04 5.92 98.08

Table C. Leave-one-domain-out protocol with different datasets: † indicates the use of an extra source dataset (CelebA Spoof)

C. Additional Quantitative Experiments

We conducted experiments under more challenging set-
tings, including the leave-two-domain-out (Sec. C.1) and
leave-three-domain-out (Sec. C.2) protocols. Additionally,
we evaluated our method on a different DGFAS dataset
to assess its generalizability beyond the original bench-
mark(Sec. C.3). We evaluate all experiments using two stan-
dard metrics: Half Total Error Rate (HTER) and Area Under
the ROC Curve (AUC).

C.1. Leave-three-domains-out protocol

Tab. A presents the results under the leave-three-domains-
out protocol, where the model is trained on a single do-
main and evaluated on the remaining unseen domains. Our
method, GD-FAS, consistently outperforms existing state-
of-the-art approaches across most domain shifts. Notably,
it achieves the best performance in particularly challeng-
ing scenarios such as O→C and M→C(HTER: 0.00%) and
I→C (HTER: 0.19%). These results highlight the strong
generalizability of our approach across highly diverse and
difficult domain pairs.

C.2. Leave-two-domains-out protocol

Tab. B presents the performance under the leave-two-
domains-out protocol, where the model is trained on
two domains and evaluated on the remaining unseen do-
mains—consistent with the experimental setup used in BU-
DoPT [9]. In both MI→C scenarios, GD-FAS achieves the
lowest HTER (2.22% and 3.75%) and the highest AUC
(99.15% and 98.75%), significantly outperforming prior
methods such as BUDoPT [9], DGUA-FAS [6], and SSDG-
R [7]. These results demonstrate the effectiveness of our
group-wise scaling and orthogonal decomposition tech-
niques in capturing domain-invariant features, even under
limited training conditions and complex inter-domain shifts.

C.3. Different dataset
Our experiments were conducted on three diverse
datasets—Surf (S) [4], CeFA (C) [3], and WMCA
(W) [2]—under the leave-one-domain-out protocol to eval-
uate cross-dataset generalization.

As shown in Tab. C, while FLIP-MCL and CFPL achieve
high AUC scores, GD-FAS demonstrates the most balanced
performance, achieving the best average results across all
domains (HTER: 5.92%, AUC: 98.08%). Notably, in the
SW→C setting, GD-FAS outperforms all baselines with
a significantly lower HTER (4.01%) and higher AUC
(98.59%), highlighting its robustness against challenging
cross-domain shifts.

D. Discussion of Computational Cost
In this section, we discuss the computational cost of GD-
FAS.

Training Efficiency The additional computational over-
head introduced by the GS-RM and FOD losses is ap-
proximately 10M FLOPs, which is negligible compared
to the overall training complexity of FLIP-MCL (88.6G
FLOPs). GD-FAS also adopts the same backbone architec-
ture as FLIP-MCL and simply replaces the original MSE
loss with the proposed GS-RM and FOD losses. As a re-
sult, GD-FAS maintains a comparable training cost to FLIP-
MCL. In contrast, prior methods often rely on significantly
more resource-intensive components, such as large lan-
guage models (LLMs) or two-stage training pipelines.

Inference Efficiency GD-FAS achieves an inference time
of 0.01 seconds per frame, matching the computational cost
of FLIP-MCL due to their shared inference pipeline. In
comparison, other baseline methods typically incur slightly
higher computational overhead and latency.



OCI→M OMI→C OCM→I ICM→O
Prediction HTER / AUC / ECE HTER / AUC / ECE HTER / AUC / ECE HTER / AUC / ECE
wI ⊗wT 0.42 / 99.88 / 3.39 0.93 / 99.99 / 1.82 3.33 / 98.61 / 2.37 2.64 / 99.34 / 2.86

ΦC 2.50 / 99.44 / 5.02 2.22 / 99.71 / 5.15 4.83 / 98.75 / 3.51 3.33 / 99.28 / 2.41

Table D. Embedding Features (wI ⊗wT) vs. Classifier (ϕC )

batch OCI→M OMI→C OCM→I ICM→O
size HTER / AUC / ECE HTER / AUC / ECE HTER / AUC / ECE HTER / AUC / ECE

3 5.00 / 98.77 / 6.38 3.15 / 99.24 / 15.81 6.67 / 98.72 / 2.24 2.96 / 99.24 / 9.41
8 2.50 / 99.85 / 3.60 2.22 / 98.84 / 8.67 5.00 / 98.94 / 2.78 3.01 / 99.20 / 5.41

16 0.42 / 99.88 / 3.39 0.93 / 99.99 / 1.82 3.33 / 98.61 / 2.37 2.64 / 99.34 / 2.86
24 0.42 / 99.90 / 2.79 0.93 / 99.86 / 0.80 3.33 / 99.25 / 2.79 2.96 / 99.34 / 5.77
32 0.42 / 99.73 / 2.53 1.11 / 99.76 / 0.72 3.50 / 99.24 / 1.84 3.01 / 99.07 / 6.72

Table E. Influence of Batch-size

Method Target OCI→M OMI→C OCM→I ICM→O
Gaussian Noise Image 7.5 3.52 3.5 4.77
Random Vector Text 7.08 4.44 11.83 7.36

a Pohoto of {dog or cat} Text 3.3 12.04 5.60 15.09
a Photo of {live of fake} face Text 2.5 1.11 5.17 4.07

Baseline (FLIP-MCL) None 0.42 0.93 3.33 2.64

Table F. Robustness across Image and Text Quality

E. Classifier vs Embedding Features

In this section, we explain why GD-FAS detects spoof-
ing attacks using embedding features rather than relying
on the classifier output, as illustrated in Fig. ??. As shown
in Tab. D, predictions based on embedding features out-
perform those based on the classifier. This performance
gap arises because the embedding space explicitly separates
domain-invariant and domain-specific information through
orthogonal decomposition. In contrast, the classifier oper-
ates on features prior to this decomposition, failing to fully
exploit the decomposed representations.

F. Analysis of Batch-Size Influence

We analyze the influence of batch size on model perfor-
mance. CLIP-based methods typically use a batch size of
3 per domain due to the large model size, resulting in an
effective batch size equal to the per-domain batch size mul-
tiplied by the number of domains.

As shown in Tab. E, a batch size of 16 is sufficient for
stable and effective training. Increasing the batch size be-
yond 16 yields marginal gains while requiring GPU mem-
ory in excess of 48GB, which may not be practical for most
setups.

(b) Hyperparameter 𝛽(a) Hyperparameter 𝜆!

HTER ECE Second SoTA

Figure E. Hyperparameter Sensitivity: Default λ1=0.8, β=1.5

G. Robustness across Image and Text Quality
We analyze the robustness of GD-FAS to variations in both
image and text quality. GD-FAS utilizes the same text tem-
plates as FLIP-MCL, comprising six distinct templates for
each class—spoof and live—to guide representation learn-
ing. To evaluate robustness, we conduct experiments under
four distinct conditions: one related to image quality and
three to text quality. For the image case, we apply Gaussian
noise to the input images to simulate visual degradation. For
the text cases: (1) we replace text embeddings with random
vectors, (2) we use only a single incorrect-class template,
and (3) we use only a single correct-class template.

As descriebed in Tab. F, while both image and text degra-
dations lead to moderate performance drops, degradation
in text quality—particularly the use of random vectors or
incorrect-class templates—results in a more substantial de-



cline. These findings suggest that text embeddings play a
crucial role in enabling GD-FAS to extract domain-invariant
features effectively.

H. Sensitivity of Hyperparameter
We performed a series of analytical experiments to examine
how FOD and GS-RM contribute to overall performance,
as shown in Fig. E. The hyperparameters λ1 and β corre-
spond to FOD and GS-RM, respectively. While our method
exhibits slight sensitivity to hyperparameter variations, the
combined use of FOD and GS-RM consistently improves
performance as their contributions are strengthened. We se-
lected the final hyperparameter values based on HTER, as
it directly reflects the model’s domain generalization abil-
ity.
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