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Figure 1. Qualitative results of the custom dataset. We captured
20 images of a house using the commerical 360◦ sensor, Insta360.

In this supplementary material, we provide additional ex-
perimental results, highlighting the superior performance of
our method compared to existing approaches. Appendix
1 shows the qualitative results of our custom dataset to
demonstrate the practicality of our method. Table 1 present
the sensor configurations of publicly available datasets con-
taining indoor scenes. Since Matterport3D [3] and Stan-
ford2D3D [1] offer sparsely scanned panoramic images in
large-scale environments, our experiments primarilty focus
on these two datasets. Appendix 3.1 highlights the advan-
tages of the spherical camera model and the dense match-
ing algorithm for indoor reconstruction. Appendix 3.2 de-
scribes the details and justifies the model choices for geom-
etry mesh reconstruction. Appendix 3.3 demonstrates the
effectiveness of our novel texturing method.

1. Real World Application
To demonstrate the versatility of our proposed spherical
Structure from Motion, we tested it on a custom dataset.
We directly captured 20 omnidirectional images in a 56 m2

house using an Insta360 camera. Figure 1 presents all reg-
istered cameras obtained through spherical SfM along with
the 3D reconstruction results.

2. Technical Details
2.1. Spherical Structure from Motion
Spherical Dense Matching: We provide details on spher-
ical dense matching. Dense matchers estabilsh pixel-wise
correspondences and sample reliable matches using confi-
dence scores. Ideally, if the network is well-trained, unreli-
able matches are filtered by confidence, and further refined
through geometric filtering during SfM. Furthermore, fol-
lowing the detector-free setting [13, 19], we quantize each
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Figure 2. Overview of Neural Surface Reconstruction. In this
work, we follow DebSDF [26], which estimates an implicit sur-
face representation by utilizing volumetric rendering and monoc-
ular geometric priors. This approach refines the underlying struc-
ture and enhances surface details, leading to more accurate 3D
reconstructions compared to other recent methods.

2D match location onto a grid to enhance the consistency of
closely spaced subpixel matches. Specifically, each coordi-
nate x is rounded to the nearest grid point using the formula,⌊
x
r

⌉
· r where r denotes the grid cell size and ⌊·⌉ repre-

sents the rounding operator. This quantization step com-
bines nearby matches into the same grid cell, effectively
merging redundant or noisy matches into a single represen-
tative location.
Spherical Two-view Geometry Estimation: We provide
additional details on spherical two-view geometry estima-
tion in the manuscript. Following Solarte et al. [21], we
adopt the eight-point algorithm (8-PA) to estimate the es-
sential matrix from corresponding points. Unlike the con-
ventional 8-PA [12], which uses normalized image coordi-
nates, we replace them with unit bearing vectors on a unit
sphere via spherical projection. Thus, a minimum of n ≥ 8
bearing vector correspondences is required to estimate the
essential matrix. We reformulate Equation (2) from the
manuscript as a least-squares problem:

A[E]v = 0 (1)

Here, A is an n×9 matrix formed by stacking the Kronecker
products of corresponding bearing vectors as Ai = ui

1⊗ui
2,

and [E]v is a vector obtained by row-wise concatenation
of the essential matrix entries. The solution to Equation 1
is obtained using the Direct Linear Transformation (DLT)



Dataset Environment Floor Space (m2) # Perspective Images # Panoramic Images Annotation

Stanford2D3D [1] 6 large indoor areas 6020 70,496 1,413 Laser Scanner
Matterport3D [3] 2056 rooms (90 scenes) 46,561 194,400 10,800 Laser Scanner
ScanNet [5] 707 small rooms 34,453 2,492,518 - RGB-D
7 Scenes [20] 7 small rooms - 43,000 - RGB-D
TUM Indoor [14] building (7 floors) 16,341 48,974 - Laser Scanner
TUM-LSI [25] building (5 floors) 5,575 1,095 - Laser Scanner
InLoc [23] building (5 floors) 10,370 10328 - Laser Scanner / RGB-D
Baidu [22] mall 9,179 2,078 - Laser Scanner
NAVER LABS [15] mall and metro 53,036 136,783 - Laser Scanner

Table 1. Among large-scale indoor datasets, Matterport3D [3] and Stanford2D3D [1] provide 360◦ panoramic images, unlike other datasets
that primarily rely on perspective images. Compared to perspective images, 360◦ images significantly reduce the number of captures
required to cover a scene. However, this sparse and reduced number of images introduces various challenges for visual localization and
mapping pipelines. To address these challenges, we integrate spherical SfM, geometric reconstruction, and texture optimization techniques
into our approach.

method [12], from which the essential matrix can be recov-
ered.

Image Pair Selection: We do not consider image pair se-
lection a core component of our pipeline and do not incor-
porate image retrieval methods such as NetVLAD, as we
regard this as a separate research topic. We intentionally
avoid using automatic annotation to ensure accurate evalu-
ation of other components (Sec3.1), especially since human
annotation is relatively easy in sparse view settings.

2.2. Geometric Reconstruction

Following the DebSDF [26], we jointly train two MLPs us-
ing the differentiable volumetric rendering, (i) fsdf , which
represents the scene geometry as a signed distance function,
and (ii) fcolor, a color network. The training process of [26]
incorporates a combination of losses, including color recon-
struction loss Lrgb =

∑
r∈R ||Ĉ(r)− C(r)||1, Eikonal loss

[11] Leikonal =
∑

x∈χ(||▽fsdf (x)||2 − 1)2 , and depth and
normal losses,

Ldepth =
∑
r∈R

||(wD̂(r) + q)−D(r)||2,

Lnormal =
∑
r∈R

||N̂(r)−N(r)||1 + ||1− N̂(r)⊤N(r)||1.
(2)

The depth and normal losses are derived from prior geomet-
ric cues by comparing the rendered depth D̂(t) and normals
N̂(t) with the corresponding prior depth D and normals N
from Omnidata [9]. Color image Ĉ is volumetrically ren-
dered by ray marching Ĉ =

∑
i∈I αi Ci Ti along with D̂

and N̂ . We then utilize the learned SDF (fsdf evaluated
over a uniform grid) to extract a mesh M using the March-
ing Cubes algorithm [16].

(b) DebSDF(a) VCR-Gauss
Figure 3. Examples of VCR-Gauss [4] and DebSDF [26]

3. More Experimental Results

3.1. Spherical Structure from Motion

Due to page limitations, we present our spherical struc-
ture from motion results in the supplementary material: 1)
OpenMVG: An open-source SfM pipeline that supports
spherical camera models [17]. 2) SPSG COLMAP: Su-
perPoint [6] and SuperGlue [18] are used with cubemap
and equirectangular projection. 3) DKM COLMAP: This
method leverages DKM [8] to establish dense correspon-
dences, utilizing cubemap and equirectangular projection.
4) SphereGlue COLMAP: SuperPoint [6] with a local pla-
nar approximation [7] and SphereGlue [10] are utilized to
mitigate distortion in ERP images. The experimental re-
sults discussed in the main paper for Matterport3D [3] and
Stanford2D3D [1] are shown in Fig. 4 and Fig. 5, respec-
tively.

3.2. Geometric Reconstruction

Figure 3 presents the geometry reconstruction results of
VCR-Gauss [4] for comparison. VCR-Gauss is a Gaus-
sian Splatting-based surface reconstruction method that uti-
lizes monocular geometry priors, similar to DebSDF [26].
However, in our experiment, we completely fail to train this
model, resulting in a polygonal soup.



3.3. Texture Map Optimization
We compare our method with several recent rendering ap-
proaches, including TexRecon [24], SparseGS [27], and
ZipNeRF [2]. Our method outperforms these approaches
by delivering higher frequency details and producing seam-
less texture maps. The results of the textured mesh and ren-
dering are shown in Fig. 6 and Fig. 7 - 10.



2t
7W

U
uJ
ek
o7

SPSG COLMAP SphereGlue COLMAPDKM COLMAP OursOpenMVG

81
94

nk
5L
bL
H

pL
e4
w
Q
e7
qr
G

RP
m
z2
sH

m
rr
Y

YV
U
C4

Yc
D
tc
Y

zs
N
o4

H
B9

uL
Z

GT Mesh & Poses

Figure 4. Qualitative Comparison of SfM results on Matterport3D. While other approaches failed to achieve pose registration, our method
successfully estimates poses by leveraging the spherical camera model and dense matching.
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Figure 5. Qualitative Comparison of SfM results on Stanford2D3D. While other approaches failed to achieve pose registration, our method
successfully estimates poses by leveraging the spherical camera model and dense matching.
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Figure 6. Qualitative Comparisons of Textured Mesh Results on Matterport3D. A comparison between TexRecon [24] and ours shows that
our method effectively reduces noise in the texture maps, leading to improved visual quality and detail.



Scene (a) Ours (b) TexRecon (d) ZipNeRF(c) SparseGS

RP
m

z2
sH

m
rr

Y
YV

UC
4Y

cD
tc

Y
2t

7W
Uu

Je
ko

7
pL

e4
w

Q
e7

qr
G

81
94

nk
7L

bL
H

zs
No

4H
B9

uL
Z

Figure 7. Qualitative Comparisons with Existing Methods. Our method can render high frequency details and results in lower noise.
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Figure 8. Qualitative Comparisons with Existing Methods. Our method can render high frequency details and results in lower noise.
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Figure 9. Qualitative Comparisons with Existing Methods. Our method can render high frequency details and results in lower noise.
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Figure 10. Qualitative Comparisons with Existing Methods. Our method can render high frequency details and results in lower noise.
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