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Table 8. Ablation study of Online Boundary Discriminator.
Each number denotes an Avg. F1 score for the range of τ and
∆. Bold number denotes the best Avg. F1 among the given same
size of queue.

τ
Size of Queue ∆

12 15 18 21 24

1.0 0.705 0.705 0.741 0.748 0.751
1.5 0.701 0.701 0.743 0.748 0.747
2.0 0.715 0.715 0.740 0.735 0.726
2.5 0.731 0.728 0.716 0.701 0.684
3.0 0.711 0.691 0.670 0.649 0.629

A. Ablation Study on Both τ and δ in OBD
In Table 8, we conduct an in-depth analysis on the inter-
action between the threshold τ and the queue size ∆ for
the Online Boundary Discriminator (OBD). This table high-
lights the effects of varying these two parameters on the av-
erage F1 (Avg. F1) score in Kinetics-GEBD dataset [34].
We observe that for a given queue size ∆, increasing the
threshold τ initially leads to improvements in performance
up to a certain point, after which further increases in τ lead
to a decline in the Avg. F1 score. For instance, when the
queue size is fixed at ∆ = 18, the peak performance is
achieved at τ = 1.5, with an Avg. F1 score of 0.743. In-
creasing the threshold means selecting more severe outliers
compared to the past errors stored in the OBD. Thus, setting
a criterion that is either too strict or not would naturally re-
sult in a decline in overall performance. We have determied
τ as 1.5 throughout the entire experiment, since it demon-
strates satisfactory performance as shown in the Table 8.

Additionally, we can observe that performance gets bet-
ter with lower τ values when ∆ increases. For exam-
ple, at a queue size of ∆ = 24, the highest F1 score is
0.751, which occurs at the lowest examined threshold of
τ = 1.0. This trend suggests that larger queues are better
with lower thresholds, potentially due to the greater amount
of past errors available in OBD queue when determining
event boundaries. We choose a queue size of ∆ = 21 and a
threshold of τ = 1.5, where the model achieves its optimal
performance with an Avg. F1 score of 0.748.

B. Further Experiments on K in REST Loss
The Regional EST (REST) loss is a core component in
training our Consistent Event Anticipator (CEA), designed
to enhance the model’s ability to detect subtle changes at
event boundaries. The parameter K determines the size of
the temporal region considered in the REST loss calcula-

Table 9. Ablation study of K in REST loss. Adjusting the range
of REST loss in training CEA.

K 3 5 7 9 11 13 15 17 19

Avg F1 0.724 0.733 0.743 0.748 0.756 0.756 0.754 0.749 0.746

Table 10. Comparison of different lengths, Avg F1 scores, and
VRAM usage. We denote the highest Avg F1 in bold.

Length Avg F1 VRAM (GB)

4 0.728 5.2
8 (Ours) 0.748 9.0

16 0.742 14.8
32 0.745 27.9

tion, controlling the range of frames that influences the loss
computation. To better understand the impact of this param-
eter, we conducted additional experiments varying the size
of K, with results presented in Table 9. These experiments
reveal a clear trend in model performance as K changes.
The Avg. F1 score shows a consistent increase as K grows
from 3 to 11, indicating that larger temporal context bene-
fits the model’s ability to detect event boundaries. This im-
provement can be attributed to the model’s enhanced capac-
ity to capture longer-range dependencies and more complex
temporal patterns within the video sequences.

Interestingly, our experimental result shows that the
model’s performance peaks when K is set to 11 or 13, with
both values yielding an Avg. F1 of 0.756. However, we
observe a decline in performance for K values beyond 13,
suggesting that excessively large temporal regions may in-
troduce noise or irrelevant information into the loss calcu-
lation. Despite the highest performance at K = 11 and 13,
we opted to use K = 9 for all experiments reported in the
main manuscript. This decision was primarily due to practi-
cal considerations, considering the trade-off between model
performance and computational resources. Larger K values
require more GPU VRAM during training, which can limit
batch sizes or necessitates more powerful hardware.

C. Ablation on Length L

The choice of input video sequence length impacts both the
performance and computational efficiency of our model. A
longer input sequence provides more temporal context, po-
tentially improving boundary detection accuracy but at the
cost of increased VRAM consumption and inference time.
Conversely, shorter sequences are computationally efficient
but may lack sufficient context for detecting subtle event
transitions.



Table 11. Quantitative comparison with additional offline methods. In addition to the offline GEBD methods presented in Table 2 of
our original manuscript, we include additional results from more recent offline approaches to highlight the robustness of our model, even
as an online method. Note that we report the performance of the models in an offline setting from their original literature. Also, we indicate
the highest F1 score with bold for each dataset.

Dataset Setting Supervision Rel. Dis. threshold 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Avg
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Offline

Supervised

BMN [26] 0.186 0.204 0.213 0.220 0.226 0.230 0.233 0.237 0.239 0.241 0.223
BMN-StartEnd [34] 0.491 0.589 0.627 0.648 0.660 0.668 0.674 0.678 0.681 0.683 0.640
TCN-TAPOS [34] 0.464 0.560 0.602 0.628 0.645 0.659 0.669 0.676 0.682 0.687 0.627

TCN [22] 0.588 0.657 0.679 0.691 0.698 0.703 0.706 0.708 0.710 0.712 0.685
PC [34] 0.625 0.758 0.804 0.829 0.844 0.853 0.859 0.864 0.867 0.870 0.817

Temporal Perceiver [38] 0.748 0.828 0.852 0.866 0.874 0.879 0.883 0.887 0.890 0.892 0.860
SBoCo-Res50 [17] 0.732 - - - - - - - - - 0.866

DDM-Net [39] 0.764 0.843 0.866 0.880 0.887 0.892 0.895 0.898 0.900 0.902 0.873
SC-Transformer [23] 0.777 0.849 0.873 0.886 0.895 0.900 0.904 0.907 0.909 0.911 0.881
EfficientGEBD [56] 0.783 0.851 - - - 0.901 - - - 0.913 0.883

LCVSL [52] 0.768 0.848 0.872 0.885 0.892 0.896 0.899 0.901 0.903 0.906 0.877
DyBDet [55] 0.796 0.858 0.880 0.893 0.901 0.907 0.911 0.915 0.917 0.919 0.890

Unsupervised

SceneDetect [34] 0.275 0.300 0.312 0.319 0.324 0.327 0.330 0.332 0.334 0.335 0.318
PA-Random [34] 0.336 0.435 0.484 0.512 0.529 0.541 0.548 0.554 0.558 0.561 0.506

PA [34] 0.396 0.488 0.520 0.534 0.544 0.550 0.555 0.558 0.561 0.564 0.527
CoSeg [45] 0.656 0.758 0.783 0.794 0.799 0.803 0.804 0.806 0.807 0.809 0.782

UBoCo-Res50 [17] 0.703 - - - - - - - - - 0.867
FlowGEBD [12] 0.713 0.828 0.850 0.858 0.862 0.864 0.866 0.867 0.868 0.869 0.845

Online Supervised ESTimator (Ours) 0.620 0.687 0.724 0.746 0.762 0.774 0.782 0.789 0.795 0.799 0.748

TA
PO

S Offline
Supervised

ISBA [34] 0.106 0.170 0.227 0.265 0.298 0.326 0.348 0.348 0.348 0.348 0.330
TCN [34] 0.237 0.312 0.331 0.339 0.342 0.344 0.347 0.348 0.348 0.348 0.330
CTM [34] 0.244 0.312 0.336 0.351 0.361 0.369 0.374 0.381 0.383 0.385 0.350

TransParser [22] 0.289 0.381 0.435 0.475 0.500 0.514 0.527 0.534 0.540 0.545 0.474
PC [34] 0.522 0.595 0.628 0.646 0.659 0.665 0.671 0.676 0.679 0.683 0.642

DDM-Net [39] 0.604 0.681 0.715 0.735 0.747 0.753 0.757 0.760 0.763 0.767 0.728
Temporal Perceiver [38] 0.552 0.663 0.713 0.738 0.757 0.765 0.774 0.779 0.784 0.788 0.732

SC-Transformer [23] 0.618 0.694 0.728 0.749 0.761 0.767 0.771 0.774 0.777 0.780 0.742
EfficientGEBD [56] 0.631 0.705 - - - 0.774 - - - 0.786 0.748

LCVSL [52] 0.618 0.694 0.728 0.749 0.761 0.767 0.771 0.774 0.777 0.780 0.742
DyBDet [55] 0.625 0.701 0.734 0.756 0.767 0.772 0.775 0.779 0.781 0.784 0.747

Unsupervised
SceneDetect [34] 0.035 0.045 0.047 0.051 0.053 0.054 0.055 0.056 0.057 0.058 0.051
PA-Random [34] 0.158 0.233 0.273 0.310 0.331 0.347 0.357 0.369 0.376 0.384 0.314

PA [34] 0.360 0.459 0.507 0.543 0.567 0.579 0.592 0.601 0.609 0.615 0.543
FlowGEBD [12] 0.375 0.502 0.569 0.624 0.658 0.677 0.695 0.703 0.711 0.717 0.623

Online Supervised ESTimator (Ours) 0.394 0.455 0.499 0.532 0.558 0.578 0.594 0.608 0.619 0.629 0.547

To achieve a balance between performance and effi-
ciency, we set the input length to an optimal value based on
empirical results. As shown in Table 10, we compare differ-
ent sequence lengths in terms of Avg F1 score and VRAM
usage. Our selected input length achieves the highest Avg
F1 score while maintaining a reasonable VRAM footprint,
making it suitable for real-time processing.

Our OBD is designed to dynamically adapt to recent
boundary patterns, reducing false positives during frequent
changes while maintaining sensitivity in stable periods.
This design aligns with human perception, as studies sug-
gest that when individuals are exposed to rapidly changing
visuals, they naturally adjust their threshold for identifying
meaningful event boundaries [11]. The ability to incorpo-
rate past outliers ensures that the model remains adaptable
to varying event structures without excessive desensitiza-
tion to new transitions.

Table 12. Ablation on batch-wise weighted loss.

Batch-wise loss Avg F1

✗ 0.743
✓ 0.748

These findings reinforce the necessity of including out-
liers in the queue to maintain robust event boundary detec-
tion, making our approach both computationally effective
and cognitively plausible.

D. Additional offline GEBD performance table
We further report the performance of models developed and
evaluated under an offline setting in Table 11. Compared
to the Table 2 in our main manuscript, Table 11 addition-
ally include Temporal Perceiver [38], SBoCo-Res50 [17],



Table 13. Quantitative comparison for generalization ability. Results on Youtube-INRIA-Instructional dataset with online and offline
baselines.

Online Method Pretrained Precision@0.05 Recall@0.05 F1@0.05

X U-Net INRIA - - 0.299
CoSeg [41] INRIA 0.467 0.633 0.537

O

TeSTra – BC Kinetics-GEBD 0.181 0.748 0.291
Sim-On – BC Kinetics-GEBD 0.099 0.068 0.080
OadTR – BC Kinetics-GEBD 0.348 0.526 0.419

MiniROAD - BC Kinetics-GEBD 0.209 0.572 0.306

Ours Kinetics-GEBD 0.411 0.666 0.508

DDM-Net [39], SC-Transformer [23], UBoCo [17],
Efficient-GEBD [56], LCVSL [52], DyBDet [55] and
FlowGEBD [12] for the Kinetics-GEBD dataset. For the
TAPOS dataset, we have additionally included DDM-Net,
Temporal Perceiver, SC-Transformer, Efficient-GEBD [56],
LCVSL [52], DyBDet and FlowGEBD [12] as UBoCo do
not report performance for this dataset.

E. Ablation on Batch-wise Weighted Loss

Table 12 presents the Avg. F1 score on the Kinetics-GEBD
dataset, evaluating the impact of batch-wise weighted loss
in our model. This technique addresses the imbalance
between boundary and non-boundary frames in the train-
ing data, a common challenge in event boundary detection
tasks. By dynamically adjusting the importance of sam-
ples within a single batch during training, the batch-wise
weighted loss aims to improve the model’s sensitivity to
boundary frames without manual hyper-parameter tuning.

The results indicate that incorporating batch-wise
weighted loss yields a 0.5%p increase in the Avg. F1 score.
This improvement may seem trivial, but considering the
sensitivity of detecting generic event boundaries, we con-
jecture that batch-wise weighting is showing noticeable im-
provement in accuracy.

F. Zero-shot Ability of Our Framework

To further demonstrate the generalization capability of our
framework, we evaluate our framework on the challeng-
ing YouTube-INRIA-Instructional dataset [1] (Table 13),
which was used in [45] and consists of long-form, multi-
minute instructional videos—markedly different in nature
from Kinetics-GEBD. Without any additional finetuning,
our model pretrained solely on Kinetics-GEBD achieves an
F1@0.05 score of 0.508. This result is competitive with,
or even superior to, existing offline methods, and it consis-
tently outperforms all online baselines. These results high-
light the strong zero-shot generalization ability of our model
to previously unseen, complex video domains.

G. Additional Details on Computational Cost
In Table 5 of the main manuscript, we analyze the real-time
performance of our proposing model, focusing on its infer-
ence speed (i.e. FPS). For completeness, we provide addi-
tional real-time metrics including computational cost details
(e.g., GFLOPs and memory usage) in Table 14, highlighting
the efficiency of our method in online scenario. As show-
cased in the Table 14, our model achieves best performance
despite having compatible number of GFLOPs and parame-
ters compared to the most efficient baselines (i.e., Sim-On-
BC, MiniROAD-BC), demonstrating the effectiveness.

H. Additional Qualitative Result
We illustrate more qualitative results of our model com-
pared to one of baselines (TeSTra-BC [54]), on both
Kinetics-GEBD and TAPOS [32] datasets. In Figure 5, we
present two cases of abrupt scene changes (i.e., first and
second row) and two cases of subtle changes (i.e., third and
fourth row) in Kinetics-GEBD dataset.

The first row shows a distinct transition such as shot
changes between events in a video. In this straightforward
scenario, both the baseline and our method yield results that
are close to the ground truth. However, the error plot of
our method for each frame shows sharp peaks, distinctively
indicating the boundary locations, in contrast to the base-
line’s, which presents a nearly flat distribution. In the sec-
ond row, there are changes of scene not only at event bound-
aries but also within each event. While TeSTra-BC fails to
recognize the semantic continuity at the first event of the
video and raises numerous false alarms, our framework rec-
ognizes the boundaries successfully. The third and fourth
example present cases where the transition of events is sub-
tle, requiring a deeper understanding of granular details to
detect event boundaries. Our model also outperforms the
baseline in identifying event boundaries.

In Figure 6, we present a comparison between TeSTra-
BC and our framework on the TAPOS dataset. As men-
tioned in our main manuscript, the TAPOS dataset consists
of Olympic sport videos annotated with 21 action classes,
where each action is further divided into multiple sub-
actions. Since these sub-actions are re-purposed as a single



Table 14. Comparison of real-time performance with computational cost. Note that bold refers to the best and underline refers to the
second best.

Method # of param. GFLOPs ↓ VRAM (MB) ↓ FPS ↑ Avg. F1 ↑
TeSTra – BC 48.73M 17.0 354 72.5 0.557
Sim-On – BC 24.70M 8.2 134 76.3 0.618
OadTR – BC 97.10M 13.0 385 48.9 0.558
MiniROAD - BC 37.15M 8.2 134 99.8 0.681

Ours 42.41M 10.3 228 96.3 0.748
∗All experiments were conducted on a single NVIDIA RTX A6000 GPU.

event in our experiment, the semantic changes between sub-
actions within the single video tend to be subtle. As shown
in Figure 6, TeSTra-BC fails to detect event boundaries in
all four cases, particularly failing to detect any boundaries
in the third and fourth cases. In contrast, our framework
successfully detects the subtle semantic changes occurring
at event boundaries in all videos.

I. Limitation and Social Impact
Although the Kinetics-GEBD and TAPOS dataset are the
only datasets available for testing the GEBD task, they con-
sist exclusively of sports or exercise-related videos. In this
context, OBD, which introduces a novel criterion for defin-
ing event boundaries, may exhibit bias toward sports or ex-
ercise contexts. To ensure robust performance across a di-
verse range of domains, it may be necessary to construct a
variety of datasets for GEBD and perform a tuning of cor-
responding parameters (e.g., ∆, τ ).

Since the On-GEBD solver is able to process diverse
long-form videos in real time, it has the potential to impact
fields that require continuous monitoring and rapid analy-
sis within the previously unobserved video streams such as
public safety and surveillance.
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Figure 5. Additional qualitative result on Kinetics-GEBD dataset. Comparison between our proposed framework and the baseline
(TeSTra-BC [54]).
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Figure 6. Additional qualitative result on TAPOS dataset. Comparison between our proposed framework and the baseline (TeSTra-
BC [54]).


