Zero-Shot Compositional Video Learning with Coding Rate Reduction

Supplementary Material

This supplementary material provides detailed descrip-
tions of the experimental setup in the main paper, as well as
efficiency analysis and additional qualitative examples.

A. Experimental setup of the Sth-Com dataset

The Sth-Com [30] dataset has 161 primitive temporal (i.e.
verb) categories and 248 primitive spatial (i.e. object) cat-
egories. These primitive categories are present in both the
training and evaluation stages. The action labels are de-
fined by combining these two types of primitive categories,
such as (Opening [something ], book), resulting in a total of
5124 action labels. Throughout the evaluation, these action
labels are divided into two groups: seen classes that are en-
countered during training and unseen classes that are never
seen during training. For example, as shown in Figure 1 (a),
only (Putting, remote) and (Taking, book) are used as train-
ing data, but the model is required to predict not only these
seen classes but also unseen classes (Putting, book), (Tak-
ing, remote) that are combinations of seen primitive con-
cepts(remote, book, Putting, Taking).

To this end, we encode primitive spatial and temporal
category labels into fixed-sized vectors. As described in the
main paper, we use fastText [2] word embeddings and CLIP
[47] text encoder to encode labels for two different exper-
iments following the previous work [30]. Specifically, we
initialize the label embeddings with the averaged fasttext
word embedding of class names. For the experiment us-
ing CLIP, we fed the entire sentence of each class name
into the CLIP text encoder with the simple prefix ”a ” only
for object categories. These label embeddings are learnable
during training. The predictions for primitive categories are
made by logits computed as cosine similarities between the
final representation from the model and spatial/temporal la-
bel embeddings with proper normalization.

B. Experimental setup of the CATER dataset

Similar to the setting in the Sth-Com dataset, the CATER
[11] dataset has 4 primitive temporal categories (rotate,
pick-place, slide, contain) and 5 primitive spatial cate-
gories (cube, sphere, cylinder, cone, snitch). The action
labels are defined by combining these two types of primi-
tive categories, which are present both in training and eval-
uation. This results in 14 atomic action labels excluding
the physically infeasible actions such as (sphere, contain).
These action labels are divided into seen and unseen classes
throughout the evaluation, similar to the experiments on the
Sth-Com. For example, as shown in Figure 1 (b), suppose
the model only encounters atomic action classes of (sphere,
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Figure 5. Additional PCA results of the resampled representations
learned by our method for two representative scenarios from the
Sth-Com [30] dataset. In each scenario, we visualize the first two
principal components of the resampled representations. These rep-
resentations are derived from videos belonging to 4 possible action
labels that are the combination of pre-defined two different cate-
gories for each spatial and temporal attribute. It can be observed
that the principal component axes of learned representations are
closely aligned with the semantic axes of attributes.

slide) and (cube, pick-place). Then, it is required to pre-
dict not only these two seen classes but also unseen classes
of (cube, slide) and (sphere, pick-place) by recombining



Table 7. GFLOPs comparison for a single video input.

# Frames
8 16 32 64
wlo AR 17.59 30.64 56.74 108.94
w/ AR 18.57 (+5.57%) 31.62 (+3.19%) 57.72 (+1.72%)  109.92 (+0.80%)

Method

learned primitive concepts (sphere, cube, slide, pick-place).

To evaluate the proposed method for zero-shot compo-
sitional action recognition on the CATER dataset, we use
a recently proposed novel data split [58] different from the
original split. In detail, atomic action labels in the CATER
dataset are divided into three disjoint groups, let L4, Lp,
and Lco. Then, action labels belonging to L4 U Lo are
categorized as seen classes, and action labels belonging to
Lp are categorized as unseen classes. In other words, the
model was trained on a subset of videos having labels be-
longing to L 4 U L¢, and it was evaluated for the remaining
videos having labels from L 4 U L¢, which were seen during
training, as well as videos having labels in L, which were
unseen during training. To implement this setting, we use
the embedding lookup to encode primitive spatial and tem-
poral categories, similar to the experiments on the Sth-Com,
excluding that label embeddings are randomly initialized to
make a fair comparison with baseline methods reported in

[58].
C. Experimental setup with VLMs

As described in the main paper, we compare the proposed
method with the most recent large-scale vision-language
models (VLMs), InternVL2-8B [7] and Qwen2-VL-8B
[50], for a more rigorous analysis. Specifically, the prim-
itive label (object, motion) candidates along with the cor-
responding video are provided as input, and we fine-tune
them with LoRA [17] adapters to predict composite ac-
tion labels. The illustration of the input sequence exam-
ple is provided in Figure 6. The experiment on the Sth-
Com was infeasible due to the excess of context length by
a large number of primitive spatial and temporal categories
(248 and 161, respectively). For evaluation, we take a post-
processing step where raw predictions are adjusted using a
cosine similarity-based approximation to ensure the answer
output is properly aligned with the label taxonomy in the
dataset.

D. Efficiency

The proposed method circumvents the computational com-
plexity by compressing the input feature into a fixed-size
set of latent queries in the resampler module, and each layer
performs a single rate reduction optimization step. There-
fore, the total complexity of the model forward pass lin-
early scales with the length of the input feature map and
the number of layers. To empirically validate this analysis,
we provide GFLOPs of the resampler module by varying

Input sequence used to train InternVL2 and Qwen2-VL

<|im_start|> user

<|vision_start|> video.avi <|vision_end|> You are an Al agent tasked
with analyzing a video and identifying the actions present in it.

Each action is a combination of an object and the motion it performs.
The possible objects and motions in the video are as follows:
Objects: sphere, cylinder, snitch, cone, cube

Motions: pick place, slide, rotate, contain

For each action present in the video, report it as a combination of the
object and motion in the following format:

e.g., sphere_slide, cube_rotate, cone_slide

List the final actions present in the video, separated by commas.
<|im_end|>

<|im_start|> assistant

Actions exist in the video are : cone_contain, cone_pick_place,
cube_pick_place, cone_pick_place, cone_pick_place, cylinder_rotate
<|im_end|>

\ J

Figure 6. Illustration of the input sequence example used to
train VLMs for zero-shot compositional action recognition on the
CATER [ 1] dataset.

the number of frames in the input video. Table 7 shows the
GFLOPs of the forward pass of the resampler module given
a single video input having a resolution of 224x224 and a
patch size of 16, with a varying number of frames. The re-
sults validate that complexity scales linearly with the frame
count, and the rate reduction optimization steps add only a
negligible amount of overhead.

E. Additional PCA examples

Figure 5 shows additional PCA results similar to Figure 4
in the main paper. In this experiment, we explore the char-
acteristics of subspaces of learned representations to vali-
date whether the proposed method learns desired represen-
tations. To this end, we first define two distinct categories
for spatial and temporal attributes, focusing on the chal-
lenging case of opposite temporal attributes. For example,
as seen in Figure 5 (a), we select spatial categories (box,
pencil) and opposing temporal categories (Moving [some-
thing] up, Moving [something ] down). Then, we aggregate
the learned representations from our method for videos hav-
ing action labels (Moving [something] up, book), (Moving
[something] up, pencil), (Moving [something ] down, book),
(Moving [something | down, pencil), which are four possible
combinations of predefined spatial and temporal categories.
The PCA results of this representation are shown in Fig-
ure 5 (a), where the first two principal components of the
learned representations are both closely aligned with spatial
and temporal semantic axes. A similar example with a dif-
ferent combination of spatial and temporal categories can
be found in Figure 5 (b).
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Figure 7. The additional examples of cross-attention map visualization in the last layer of the resampler module. Example videos are
selected in the Sth-Com [30] dataset, having six different action labels: (a) Pushing lipstick from right to left, (b) candy falling like a rock,
(c) Pulling tape from left to right, (d) Tilting lid with a clothespin on it until it falls off, (€) Moving cup across a surface until it falls down,
(f) Dropping slipper onto floor. For each video, we select a representative head and visualize its attention map on the input frames across
time. It can be observed that each head captures the informative object and its temporal variations, even trained without dense labels of
object positions such as bounding boxes.
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F. Additional attention map examples

Figure 7 shows additional examples of cross-attention map
visualization in the last layer of the proposed resampler
module, similar to Figure 3 in the main paper. We empha-
size again that the proposed method captures the informa-
tive object within a video and its temporal variations very
clearly even though it is trained without dense labels giving
the precise position of the object, such as bounding boxes.



