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A. Overview

In this Appendix, we provide additional details and results
that complement the main text:

• Section B introduces various model merging methods.
• Section C describes the Transformer-based model archi-

tecture used in our experiments, focusing on the MLP and
multi-head attention modules.

• Section D details the MLP permutation optimization.
• Section E offers a proof of equivalence under our random

multi-head scaling, ensuring the model’s functionality re-
mains unchanged.

• Section F presents the complete algorithmic steps of
PaRaMS.

• Section G provides dataset descriptions for the image
classification tasks.

• Section H shows additional classification results not in-
cluded in the main paper, illustrating further evidence of
our method’s effectiveness.

• Section I includes extended experiments on image gen-
eration, highlighting the robustness of our defense across
diverse prompts and scenarios.

• Section J lists other comparative results between different
merging methods.

B. Introductions of Merging Methods

Weight Average (WA). WA assumes an equal contribu-
tion of each task vector in merged models and merges task
vectors of multiple models into a single one by simple av-
eraging: f(τ1, . . . , τn) = 1

nΣ
n
i=1τi.

AdaMerging. AdaMerging is also based on the weighted
sum to aggregate task vectors. Nevertheless, it assumes
that the task vector of different layer (i.e, τ ℓi ) has different
effects in merging, and proposed a layer-wise coefficients
Λi = {λ1

i , . . . , λ
L
i }. Specifically, merging coefficients Λi

are calculated based on the entropy on an unlabeled held-
out dataset, and the merging algorithm is formalized as:
f ℓ(τ1, . . . , τn) = λℓ

iΣ
n
i=1τ

ℓ
i for the ℓ-th layer. Different

from other merging algorithms, additional calculation is re-
quired on searching for Λi.

TIES-Merging (TIES). TIES is a plug-in for model
merging methods, which resolve task conflicts in merging
by TRIM, ELECT SIGN and MERGE on task vectors. The
merging performs as: f(τ1, . . . , τn) = λΣn

i=1ϕ(τi) where

ϕ is combined TIES operations and λ = 0.3 maximize the
merging performance empirically, the same as TA.

Drop And REscale (DARE). DARE is also a plug-in for
model merging methods like TIES. Following a drop and
rescale flow, DARE first perform random drop on τi based
on a drop rate p (i.e., setting their values to zeros), and
rescales the remaining weights by 1/(1 − p). DARE of-
ten retains or enhances the performance of model merging
methods with even 90% task vectors removed.

C. Model Architecture

Our method is specially designed for Transformer-based ar-
chitectures, in which each layer (often called a Transformer
block) combines a multi-head attention submodule with a
MLP. This design has become a core building block of mod-
ern deep learning models, including ViTs, CLIP models,
Stable Diffusion models and LLMs such as LLaMA. Since
the proposed method is closely related to the structure of
MLP and Attention block, we briefly describe how the MLP
and Attention submodules operate within each Transformer
block.

MLP. The MLP submodule applies nonlinear transforma-
tions to each position’s feature vector, often scaling dimen-
sions in the hidden layer. Let X ∈ Rd be the feature vector
at a single position (for simplicity, omitting batch and se-
quence dimensions). A typical two-layer MLP computes

MLP(X) = W2 σ
(
W1 X + b1

)
+ b2,

where W1 ∈ Rdhidden×d, W2 ∈ Rd×dhidden (with biases
b1, b2) are learnable parameters, and σ(·) is a nonlinear ac-
tivation (e.g., GELU). This per-position feed-forward step
enhances the network’s expressive power without introduc-
ing dependencies across positions.

Structure of Multi-head Attention Block. Consider
having h parallel attention heads, each with dimensionality
dk. Suppose the input sequence is represented by

x ∈ Rseq×dmodel .



A linear mapping first produces Q,K, V ∈ Rseq×(h×dk).
We then split these along the last dimension into h parts:

Q →
[
Q1, . . . , Qh

]
,

K →
[
K1, . . . ,Kh

]
,

V →
[
V1, . . . , Vh

]
,

where each Qi,Ki, Vi ∈ Rseq×dk corresponds to the i-th
attention head. For the i-th head, the attention output is
given by

Attn
(
Qi,Ki, Vi

)
= softmax

(Qi K
T
i√

dk

)
Vi.

The outputs of the h heads are then concatenated and pro-
jected via an output weight WO ∈ R(h×dk)×dmodel :

Attention
(
Q,K, V

)
=[

Attn
(
Q1,K1, V1

)
, . . . , Attn

(
Qh,Kh, Vh

)]
WO.

D. MLP Permutation Optimization
Considering the optimization problem in Section Method:

argmax
ηperm

∥∥θMLP
pre −ηperm(θ

MLP
def )

∥∥2 = argmin
ηperm

θMLP
pre ·ηperm(θ

MLP
def ).

Which can be re-expressed in the following term in a 2-layer
MLP:

arg min
ηperm={Pi}

n∑
i=1

[⟨W (i)
premlp1, PiW

(i)
defmlp1⟩F

+⟨W (i)
premlp2,W

(i)
defmlp2P

T
i ⟩F ],

where ⟨A,B⟩F denotes the Frobenius inner productbe-
tween real-valued matrices A and B. Hence, the optimiza-
tion could be re-expressed and solved as a linear assignment
problem.

E. Proof of Equivelance based on Random
Scaling

First, scaling on Qi and Ki keeps attention weights un-
changed. Suppose we multiply Qi by a diagonal matrix Ai

and simultaneously multiply Ki by A−1
i . Then

Q′
i K

′
iT√

dk
=

(Qi Ai)
(
Ki A

−1
i

)T
√
dk

=
Qi K

T
i√

dk
,

ensuring that the attention score matrix and thus the softmax
weights remain identical to the original.

Scaling Vi and the output projection WO is also an in-
verse pair. We could multiply Vi by diagonal matrix Bi

(possibly channelwise or headwise) and compensate by

multiplying the corresponding block in the output projec-
tion by B−1. Concretely, the single-head output keeps iden-
tical

Attention
(
Q′

i,K
′
i, V

′
i

)
=

softmax
(Qi K

T
i√

dk

) (
ViBi

)
B−1

i WO[:, i] =

Attention
(
Qi,Ki, Vi

)
,

hence, each head i can adopt

Q′
i = Qi Ai, K ′

i = Ki A
−1
i

V ′
i =Vi Bi, W ′

O[:, i] = B−1
i WO[:, i],

so that the multi-head attention output ends up identical to
its original form.

F. Algorithm of PaRaMS
The algorithm consists of 2 subblocks: Parameter Rear-
rangement for MLP block and Random Multi-head Scal-
ing for attention block. The pseudocode for our method is
shown in Algorithm 1.

Algorithm 1 PaRaMS
Input: Fine-tuned model θdef , pretrained checkpoint θpre,
scaling range [smin, smax]

Output: Modified model θ̂
1: θ̂ ← θdef

Step 1: MLP Parameter Rearrangement
2: for each MLP layer ℓ do

3: P (ℓ) ← argmax
P

∥∥∥ P (ℓ)
(
θ
(ℓ)
def

)
− θ(ℓ)pre

∥∥∥2
4: W

(ℓ)
1 ← P (ℓ) W

(ℓ)
1

5: W
(ℓ)
2 ← W

(ℓ)
2

(
P (ℓ)

)⊤
6: b

(ℓ)
1 ← P (ℓ) b

(ℓ)
1

7: end for
Step 2: Random Multi-Head Scaling

8: for each layer j containing multi-head attention do
9: for each attention head i do

10: ai ∼ U(smin, smax)
dk

11: Ai ← diag(ai) ∈ Rdk×dk

12: Qj,i ← Qj,iAi

13: Kj,i ← Kj,iA
−1
i

14: bi ∼ U(smin, smax)
dk

15: Bi ← diag(bi) ∈ Rdk×dk

16: Vj,i ← Vj,iBi

17: Wout[j, :, i] ← B−1
i Wout[j, :, i]

18: end for
19: end for
20: return θ̂



G. Dataset Discriptions used in Image Classifi-
cation Task

Cars. Cars dataset comprises high-resolution images of
cars, with a focus on fine-grained vehicle classification. It
contains about 16,000 images spanning 196 car models,
making it a benchmark for fine-grained recognition tasks.

RESISC45. RESISC45 is a remote sensing image dataset
containing 31,500 images from 45 scene classes (e.g., air-
ports, industrial areas, harbors). Each class has 700 images,
facilitating the study of aerial scene classification.

SVHN. SVHN dataset features real-world digit images
extracted from Google Street View. It includes over 600,000
labeled digits, commonly used for digit recognition under
challenging, cluttered backgrounds.

GTSRB. GTRSB consists of over 50,000 images cover-
ing 43 traffic sign classes. It is widely used to evaluate clas-
sification performance in real-world traffic scenarios.

MNIST. MNIST is a classic dataset of handwritten digit
images (0–9), comprising 70,000 grayscale images (60,000
for training, 10,000 for testing). It remains a foundational
benchmark for evaluating basic image classification meth-
ods.

EuroSAT. EuroSAT is a satellite image dataset derived
from Sentinel-2 data, covering 10 land-use and land-cover
classes (e.g., forest, residential). It contains 27,000 labeled
images, serving as a testbed for remote-sensing scene clas-
sification.

DTD. DTD Dataset includes 5,640 images of texture pat-
terns grouped into 47 classes (e.g., banded, porous, grid).
It focuses on texture-centric classification and is often used
to assess a model’s ability to capture fine-grained visual at-
tributes.

H. Other Results on Image Classification
H.1. Evaluation when more than two models are

merged
We further investigate the scenario where more than two
models are merged simultaneously with task arithmetic.
Specifically, we evaluate the performance of merging 2 to
7 finetuned models at once, examining whether our defense
remains effective when merging with more than 2 models.
When merging with more than 2 models, the common scal-
ing coefficient is usually set as λ = 0.3, we follow this set-
ting. In Figure 1, we can observe performance of MMP- is

Figure 1. The classification accuracy of MMP-/MMP+ (merged
by TA) with different numbers of merged models (2 to 7) Here,
defender’s model is trained on MNIST, and the other six tasks as
free-riders’ task) with a scaling coefficient of 0.3, evaluated on
ViT-B-32 and ViT-L-14.

at least larger than 60% (green and blue line) while the per-
formance of MMP+ is at most less than 10% (orange and
red line), this means our proposal is still effective with dif-
ferent number of merged model. The Benign curves (ViT-
B-32 in blue, ViT-L-14 in green) show that as the number
of merged models increases, the average accuracy gradually
declines (e.g., from around 85% to 63% on ViT-B-32, and
from around 90% to 77% on ViT-L-14). In contrast, the
Protected curves (ViT-B-32 in orange, ViT-L-14 in red) re-
main consistently low (around 6–7%), indicating that once
our defense is applied, merging multiple models fails to
preserve any meaningful performance. This result demon-
strates that our protection method continues to be effective
even in scenarios where more than two models are merged.

H.2. Evaluation TA performance under different
scaling coefficient

Since the performance of TA is affected by a merge coef-
ficient, we then measure whether different coefficients af-
fect our proposal. By adjusting the coefficient from 0.3 to
0.8, we observe how the performance of MMP- and MMP+
evolves when combining multiple specialized models, as
shown in Figure 2. Here, the defender is finetuned on Eu-
roSAT, and the free-rider consists of six other tasks. In the
figure, we can observe that the performance of MMP- (lines
in different shades of blue) is at least larger than 60%, and
the performance of MMP+ (lines in different shades of red)
is at most less than 25%. This demonstrates the effective-
ness of our method in preventing free-riders from gaining
the specialized capabilities of the defender’s model, regard-
less of the TA scaling coefficient.



Figure 2. The classification accuracy of MMP-/MMP+ (merged
by task arithmetic) with coefficient 0.3 to 0.8. Here, the defenser’s
model is trained on EuroSAT, and we have six different free-rider
tasks. Here, model is ViT-B-32.

Table 1. Ablation study based on ViT-L-14. Defender: Cars.
Free-rider: other six tasks. Merging method: TA (scaling coef-
ficient=0.8).

Setting Average accuracy (%) of MMP+
Rearrangement Only 5.90

Scaling Only 10.92
PaRaMS 4.99

H.3. Ablation Study
Our method comprises two key modules, MLP parameter
rearrangement and random multi-head scaling. They jointly
disrupt model merging while preserving the model’s func-
tionality. To examine how each module individually con-
tributes to this disruption, we perform an ablation study by
omitting one module at a time. Specifically, we compare
the avarage accuracy of MMP+ based on ViT-L-14 and TA
(scaling coefficient=0.8). Results are shown in Table 1.

Table 1 shows that even with a single module (Rear-
rangement Only or Scaling Only), the MMP+ accuracy still
exhibits significant degradation compared to benign merg-
ing scenarios. This indicates that either MLP rearrangement
or random multi-head scaling alone can effectively disrupt
model merging, thereby providing flexibility when only one
type of parameter manipulation is applicable in merging.
Nonetheless, employing both modules (PaRaMS) yields an
even stronger defense, as it further increases the parameter
distance across both MLP and attention modules. We thus
conclude that each module individually contributes substan-
tially to disrupting model merging, yet their combination
provides a more robust protection.

H.4. Computation Cost Comparison
We further compare the computational costs associated
with the original model merging, our proposed defense
(PaRaMS), and an ultimate adaptive attack based on knowl-
edge distillation (KD). This experiment is conducted on a
Windows 11 platform equipped with AMD Ryzen 9 9950X

Table 2. Average computational cost comparison of merging based
on TA, applying PaRaMS and performing knowledge distillation
as adaptive method.

Setting/Model ViT-B-32 ViT-L-14
Task Arithmetic 1.59s 5.08s

PaRaMS 57.32s 173.05s
Knowledge Distillation 3.82h 11.42h
Finetune From Pretrain 2.57h 7.83h

CPU and Nvidia A6000 Ada GPU. For the KD setting, we
fine-tune the model for 50 epochs anda a 128 batch size.
The average computation time across seven datasets is pre-
sented in Table 2.

As shown in Table 2, PaRaMS is computationally
lightweight, requiring only 57.32 seconds on average for
ViT-B-32 and 173.05 seconds for ViT-L-14. In compari-
son, the standard model merging based on Task Arithmetic
is extremely efficient, taking less than 10 seconds, thus sig-
nificantly lowering the barrier for potential free-riders, and
highlighting the risks of intellectual property (IP) infringe-
ment associated with lightweight merging methods. On the
other hand, the adaptive attack via KD incurs substantially
higher computational costs (near 4 hours for ViT-B-32 and
12 hours for ViT-L-14). Moreover, it requires access to the
defender’s private training data, which is typically unavail-
able since model publishers rarely share their proprietary
datasets publicly. Therefore, the KD approach is not practi-
cally feasible in most open-source scenarios.

I. Other Results on Image Generation
We further show several sets of generated images from
UMP-, UMP+, free-rider, MMP- and MMP+. For Figure
3, the defender is an Anime-based SD1.5 model, and the
free-rider is a reality-Europe SD1.5 model, both from Hug-
gingFace.

In these generated images, UMP- (the unprotected single
model) and UMP+ (the protected single model) both faith-
fully capture the prompt details—such as “Angel Goku”
standing before the Eiffel Tower or “Naruto Uzumaki” in
Rome—indicating that our defense does not degrade the
protected model’s original generative performance. Con-
versely, MMP- (the benign merged model) successfully
blends concepts from both the defender and free-rider, as
shown by coherent scenes like “Crayon Shin-chan eating
spaghetti in an European restaurant.”

Once protection is applied, however, MMP+ (the pro-
tected merged model) fails to inherit the defender’s special-
ized knowledge, resulting in heavily distorted or random ar-
tifacts. For instance, the final column in each row often ap-
pears corrupted or nonsensical, demonstrating that the free-
rider cannot exploit the protected model’s fine-tuned capa-
bilities through merging. Overall, these results underscore



Figure 3. Generated images from UMP-, UMP+, MMP-, MMP+.
Each row is related to one prompt set.

Figure 4. Generated images from UMP-, UMP+, MMP-, MMP+.
Each row is related to one prompt set.

that our defense preserves the defender’s performance while
rendering merged outputs unusable.

We also show generation examples of Animated-
Gundam style and realistic style in Figure 4.

In these examples, UMP-/UMP+ specializes in an
anime–mecha aesthetic (e.g., “giant gundam” and “robot

girl”), while the free-rider focuses on more realistic im-
agery (e.g., “close-up shot of a lion”). The UMP- and
UMP+ both render their respective prompts with high fi-
delity—indicating our defense does not degrade the de-
fender’s own mecha–anime style. Meanwhile, the free-rider
model excels at realism, as seen in the lion images.

For MMP-, the outputs successfully blend the anime
mecha concepts with the free-rider’s realistic style, produc-
ing coherent “hybrid” results. However, once the defender
is protected, MMP+ fails to inherit the mecha–anime ca-
pabilities and instead generates heavily corrupted or noisy
outputs. This underscores that while our defense preserves
the defender’s fine-tuned strengths, it prevents any merged
model from cheaply acquiring those specialized skills.

J. Comprehensive Results of Different Merg-
ing Methods

We show one set of results on TA without DARE based on
Vit-B-32 in the paper, and overall average accuracy of eight
merging settings on three architectures. Here we show the
other seven settings of ViT-B-32 in the following.

The tables show a same result that our method efficiently
disturbs model merging in all the following settings on all
datasets.



Table 3. The classification accuracy of MMP-/MMP+ (merged by TA with DARE) on Tdef and Tfr on ViT-B-32 (λ = 0.8).

MMP- Accuracy (%) on Tdef/Tfr
MMP+ Accuracy (%) on Tdef/Tfr

Tfr
Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Tdef

Cars NA
69.93/93.95
0.52/2.84

71.99/99.80
0.55/9.93

67.65/97.30
0.60/8.36

67.53/98.53
0.47/3.35

67.62/99.67
0.52/9.00

70.17/76.70
0.39/1.65

RESISC45
93.95/69.93
2.33/0.56 NA

83.14/99.90
2.60/3.83

90.51/96.82
1.95/7.41

90.02/97.86
1.76/0.82

90.49/99.57
1.22/11.16

93.22/72.45
2.11/2.13

EuroSAT
99.80/71.99
9.15/0.53

99.90/83.14
9.33/2.32 NA

98.11/95.89
11.13/9.00

98.11/93.33
10.65/3.80

96.98/99.48
19.04/9.66

99.72/70.48
12.44/1.81

SVHN
97.30/67.65
9.57/0.47

96.82/90.51
9.23/1.79

95.89/98.11
11.46/8.78 NA

94.64/94.18
8.53/2.22

92.27/99.40
9.96/10.88

96.95/67.77
9.21/2.34

GTSRB
98.53/67.53
1/59/0.62

97.86/90.02
1.47/2.57

93.33/98.11
1.85/9.31 94.18/96.64 NA

91.96/99.35
2.03/9.24

98.18/67.39
2.41/2.61

MNIST
99.67/67.62
9.71/0.47

99.57/90.49
9.51/2.19

99.48/96.98
8.54/11.50

99.40/92.27
9.82/9.07

99.35/91.96
9.72/3.28 NA

99.67/70.21
10.36/2.18

DTD
76.70/70.17
2.55/0.45

72.45/93.22
2.23/1.73

70.48/99.72
1.76/11.93

67.77/96.95
2.18/8.02

67.39/98.18
2.07/1.69

70.21/99.67
2.18/9.94 NA

Table 4. The classification accuracy of MMP-/MMP+ (merged by SA) on Tdef and Tfr on ViT-B-32.

MMP- Accuracy (%) on Tdef/Tfr
MMP+ Accuracy (%) on Tdef/Tfr

Tfr
Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Tdef

Cars NA
73.20/92.87
0.46/2.68

73.60/99.30
0.46/9.24

71.87/95.36
0.46/7.56

73.42/96.89
0.46/3.09

73.00/99.41
0.46/9.58

74.28/72.07
0.46/2.13

RESISC45
92.87/73.20
2.62/0.51 NA

87.60/98.93
2.27/10.69

90.92/94.66
2.94/8.11

91.11/95.33
3.05/1.73

91.10/99.43
3.73/9.24

92.14/70.11
3.06/2.39

EuroSAT
99.30/73.60
9.17/0.52

98.93/87.60
12.93/2.52 NA

97.67/92.97
13.85/13.79

97.11/92.24
10.94/2.14

97.96/99.18
8.52/9.84

99.15/69.31
13.00/2.13

SVHN
95.36/71.87
9.69/0.36

94.66/90.92
9.69/2.57

92.97/97.67
9.69/9.67 NA

94.74/94.83
9.69/3.16

92.50/99.37
9.69/9.82

95.36/70.53
9.69/2.82

GTSRB
96.89/73.42
3.09/0.44

95.33/91.11
3.09/2.52

92.24/97.11
3.18/14.54

94.83/94.74
3.09/8.19 NA

93.25/99.12
3.17/8.95

96.78/70.85
3.09/2.13

MNIST
99.41/73.00
9.26/0.47

99.43/91.10
8.61/2.10

99.18/97.96
9.78/13.80

99.37/92.50
9.82/9.70

99.12/93.25
9.82/5.87 NA

99.45/69.10
9.82/2.29

DTD
72.07/74.28
1.81/0.62

70.11/92.14
1.76/2.44

69.31/99.15
1.76/19.67

70.53/95.36
1.65/14.74

70.85/96.78
1.86/2.91

69.10/99.45
1.91/11.02 NA

Table 5. The classification accuracy of MMP-/MMP+ (merged by SA with DARE) on Tdef and Tfr on ViT-B-32.

MMP- Accuracy (%) on Tdef/Tfr
MMP+ Accuracy (%) on Tdef/Tfr

Tfr
Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Tdef

Cars NA
73.34/92.97
0.42/2.21

73.36/99.28
0.47/8.22

71.81/95.33
0.51/9.45

73.62/96.90
0.61/2.38

72.89/99.43
0.44/9.81

73.78/71.81
0.63/1.81

RESISC45
92.97/73.34
2.10/0.56 NA

87.52/98.91
2.14/4.56

90.92/94.55
2.37/7.58

91.06/95.29
1.94/1.96

90.95/99.45
2.51/9.41

91.94/69.63
2.27/2.82

EuroSAT
99.28/73.36
12.57/0.58

98.91/87.52
11.41/2.86 NA

97.65/92.96
9.26/7.32

97.19/92.14
6.59/2.83

97.93/99.20
9.26/10.21

99.07/68.99
8.20/1.76

SVHN
95.33/71.81
6.69/0.47

94.55/90.92
7.54/2.52

92.96/97.65
9.56/10.76 NA

94.70/94.81
14.11/3.10

92.39/99.34
8.75/9.50

95.39/70.32
7.76/2.02

GTSRB
96.90/73.62
2.71/0.56

95.29/91.06
2.13/2.10

92.14/97.19
2.97/7.94

94.81/94.70
2.12/7.58 NA

93.26/99.09
3.44/11.31

96.75/70.69
2.15/1.60

MNIST
99.43/72.89
10.44/0.52

99.45/90.95
9.67/2.51

99.20/97.93
9.05/11.22

99.34/92.39
9.31/8.23

99.09/93.26
9.72/2.92 NA

99.45/68.83
8.04/2.93

DTD
71.81/73.78
2.18/0.51

69.63/91.94
2.45/2.62

68.99/99.07
2.23/6.65

70.32/95.39
2.34/8.68

70.69/96.75
1.97/1.19

68.83/99.45
2.02/9.73 NA



Table 6. The classification accuracy of MMP-/MMP+ (merged by TIES) on Tdef and Tfr on ViT-B-32.

MMP- Accuracy (%) on Tdef/Tfr
MMP+ Accuracy (%) on Tdef/Tfr

Tfr
Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Tdef

Cars NA
75.96/93.35
0.53/2.11

76.11/99.11
0.65/9.24

75.28/96.27
0.58/9.22

75.95/96.60
0.58/3.09

76.43/99.57
0.57/8.92

75.46/74.57
0.62/2.18

RESISC45
93.35/75.96
3.22/0.52 NA

89.44/98.41
2.75/19.61

92.27/96.10
2.86/7.85

92.86/95.76
3.05/3.08

92.62/99.60
3.02/9.85

92.78/73.56
3.16/2.29

EuroSAT
99.11/76.11
11.19/0.58

98.41/89.44
12.37/1.84 NA

96.96/95.39
11.24/7.53

96.87/92.61
12.26/3.79

98.15/99.51
11.39/8.33

98.63/72.93
11.93/2.13

SVHN
96.27/75.28
9.18/0.47

96.10/92.27
9.17/2.11

95.39/96.96
9.16/10.93 NA

95.56/95.17
9.18/4.81

93.89/99.36
9.16/8.92

96.43/73.09
9.16/2.45

GTSRB
96.60/75.95
2.95/0.53

95.76/92.86
3.00/3.41

92.61/96.87
2.96/9.19

95.17/95.56
2.90/9.56 NA

94.61/99.44
3.01/10.02

97.17/74.52
2.89/1.86

MNIST
99.57/76.43
9.82/0.58

99.60/92.62
9.82/2.52

99.51/98.15
9.82/10.13

99.36/93.89
9.82/9.69

99.44/94.61
9.82/2.88 NA

99.59/72.82
9.82/2.13

DTD
74.57/75.46
2.13/0.60

73.56/92.78
2.13/2.43

72.93/98.63
2.13/18.54

73.09/96.43
2.13/6.43

74.52/97.17
2.13/3.09

72.82/99.59
2.13/9.74 NA

Table 7. The classification accuracy of MMP-/MMP+ (merged by TIES with DARE) on Tdef and Tfr on ViT-B-32.

MMP- Accuracy (%) on Tdef/Tfr
MMP+ Accuracy (%) on Tdef/Tfr

Tfr
Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Tdef

Cars NA
75.76/90.84
0.57/2.40

76.16/98.78
0.50/11.69

75.67/95.44
0.57/8.83

76.12/95.55
0.46/2.36

76.32/99.53
0.51/10.33

75.03/71.33
0.71/2.07

RESISC45
90.84/75.76
2.13/0.57 NA

92.63/97.13
2.70/10.81

94.89/93.90
2.11/7.55

95.06/89.15
2.10/2.08

95.02/99.54
2.21/9.73

95.30/66.17
2.05/2.18

EuroSAT
98.78/76.16
11.76/0.47

97.13/92.63
9.09/3.05 NA

99.50/89.06
9.06/8.95

99.56/82.42
11.41/1.35

99.65/99.12
5.57/9.03

99.81/64.47
7.48/2.13

SVHN
95.44/75.67
12.92/0.53

93.90/94.89
9.12/2.51

89.06/99.50
8.53/9.39 NA

96.81/87.63
8.92/2.08

96.25/99.05
10.11/10.10

97.26/62.45
8.77/1.86

GTSRB
95.55/76.12
2.58/0.51

89.15/95.06
1.80/1.97

82.42/99.56
0.80/7.83

87.63/96.81
1.94/8.84 NA

98.27/98.63
2.53/10.73

98.73/61.70
1.38/2.77

MNIST
99.53/76.32
9.62/0.49

99.54/95.02
9.16/1.98

99.12/99.65
11.07/5.93

99.05/96.25
9.48/8.03

98.63/98.27
10.52/2.06 NA

99.67/60.53
9.33/2.29

DTD
71.33/75.03
2.02/0.47

66.17/95.30
2.45/2.56

64.47/99.81
2.82/11.98

62.45/97.26
2.18/8.31

61.70/98.73
1.70/2.15

60.53/99.67
2.02/8.79 NA

Table 8. The classification accuracy of MMP-/MMP+ (merged by AdaMerging) on Tdef and Tfr on ViT-B-32.

MMP- Accuracy (%) on Tdef/Tfr
MMP+ Accuracy (%) on Tdef/Tfr

Tfr
Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Tdef

Cars NA
74.01/90.67
0.61/2.52

73.72/96.81
0.57/21.74

73.51/83.82
0.56/11.25

73.71/95.69
0.55/3.04

74.56/96.51
0.57/9.68

73.80/66.12
0.67/2.23

RESISC45
90.67/74.01
2.81/0.55 NA

87.29/97.09
2.60/13.06

90.29/83.99
2.57/7.64

89.10/95.46
2.90/2.14

90.51/96.77
2.68/9.51

90.59/66.17
2.84/2.93

EuroSAT
96.81/73.72
9.26/0.51

97.09/87.29
9.26/2.52 NA

95.91/82.77
9.20/11.74

95.00/95.15
9.24/3.80

96.50/96.32
9.26/8.35

96.76/66.33
9.26/1.12

SVHN
83.82/73.51
7.82/0.55

83.99/90.29
7.70/2.43

82.77/95.91
7.68/13.17 NA

87.63/95.91
7.94/3.09

87.77/98.22
7.79/9.58

85.15/66.81
7.64/2.29

GTSRB
95.69/73.71
1.46/0.55

95.46/89.10
1.70/3.16

95.15/95.00
1.49/11.41

95.91/87.63
1.54/8.10 NA

95.72/96.58
1.47/9.97

95.66/66.54
1.74/2.13

MNIST
96.51/74.56
6.68/0.44

96.77/90.51
5.32/2.78

96.32/96.50
6.84/11.81

98.22/87.77
7.53/19.11

96.58/95.72
8.28/6.03 NA

96.73/66.38
8.37/2.18

DTD
66.12/73.80
1.91/0.36

66.17/90.59
2.07/4.00

66.33/96.76
1.97/8.41

66.81/85.15
2.13/12.69

66.54/95.66
2.34/3.09

66.38/96.73
1.86/8.92 NA



Table 9. The classification accuracy of MMP-/MMP+ (merged by AdaMerging with DARE) on Tdef and Tfr on ViT-B-32.

MMP- Accuracy (%) on Tdef/Tfr
MMP+ Accuracy (%) on Tdef/Tfr

Tfr
Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD

Tdef

Cars NA
73.85/90.41
0.51/1.87

73.90/96.83
0.56/9.28

73.27/83.97
0.50/8.70

73.68/95.63
0.34/3.06

74.37/96.55
0.47/11.63

73.97/66.33
0.49/2.34

RESISC45
90.41/73.85
1.94/0.50 NA

87.30/96.91
2.33/9.15

90.30/83.87
2.60/9.69

89.10/95.49
2.40/3.26

90.32/96.72
2.02/9.63

90.70/66.38
3.17/2.61

EuroSAT
96.83/73.90
13.59/0.51

96.91/87.30
9.48/1.97 NA

95.89/83.01
13.43/13.14

94.94/94.96
11.30/1.84

96.56/96.40
7.91/10.28

96.70/66.12
15.44/1.97

SVHN
83.97/73.27
9.70/0.50

83.87/90.30
8.09/2.19

83.01/95.89
9.75/11.30 NA

87.80/95.95
9.15/1.36

87.83/98.21
7.24/11.10

84.95/66.97
8.55/1.86

GTSRB
95.63/73.68
1.59/0.56

95.49/89.10
1.36/1.81

94.96/94.94
3.09/9.33

95.95/87.80
2.12/7.62 NA

95.62/96.62
1.76/9.40

95.61/66.44
2.89/3.09

MNIST
96.55/74.37
10.28/0.46

96.72/90.32
9.82/1.17

96.40/96.56
10.10/11.11

98.21/87.83
8.51/7.99

96.62/95.62
10.12/2.16 NA

96.77/66.38
9.52/1.44

DTD
66.33/73.97
2.23/0.44

66.38/90.70
2.29/2.11

66.12/96.70
2.13/9.04

66.97/84.95
2.13/9.04

66.44/95.61
2.29/2.57

66.38/96.77
2.39/9.10 NA
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