Supplementary Material

Overview of the Appendix

The main contents of this appendix are as follows:

e App. A: Presents overview of NCD, efficiency analysis
of SAM, and theoretical results and proof regarding theo-
rems.

* App. B: Describes detailed experimental settings.

* App. C: Effectiveness on S1-S4 Search Spaces.

e App. D: Presents strong generalizability on OoD-ViT-
NAS-Ti search space.

* App. E: Presents visualization of architectures searched
by our method.

e App. F: Presents more discussion and experimental re-
sults.

* App. G: Presents related work.

A. Overview of NCD, Efficiency Analysis of
SAM, and Theoretical Analysis

A.1. Overview of NCD

To fulfill the goal of enhancing the training-free NAS sys-
tem by defying negative correlation, NCD comprises a
stochastic activation masking and a non-linear rescaling.
The framework of the proposed NCD is provided in App.
1. First, we provide the definition of variables to illustrate
our method for training-free NAS system in detail. To be
specific, A denotes architecture search space, A represents
number of architecture sampling, 7 denotes task, D denotes
dataset, BB denotes batch size, Fp.s:(-) denotes searched best
architecture by our NCD. Second, we select a batch B in-
put images X = {s;}2_, from dataset D for task 7. Third,
we randomly select an architecture Fj(-) from architecture
search space .4, then calculate activation patterns ¢; by ob-
taining Fj(s;). After that, we score the architecture F)(-)
using NCD. Finally, we can achieve the final searched ar-
chitecture Fye4:(-) by selecting the highest Scorepes: scored
by NCD.

A.2. Detailed Proof for Theorems
A.2.1. The Detailed Proof for Theorems 4.2

Theorem A.2. Given a convolution output tensor X €
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Normalization(LN) of value x; ; 1, ) can be formulated as:

Algorithm 1 The Framework of NCD Method

1: procedure TRAINING-FREE NAS SYSTEM
2: Input: Given task 7 and dataset D, architecture
search space A, number of architecture sampling N €
A, batch size B.

Output: Best architecture Fpes(-).

Initialization: Scorepes: <— 0, Fpest(+) < 0.

for j to [1, V] do

a; < Randomly select a batch B input images

X = {s;}B | from dataset D for task T;

AN A

7: F;(-) < Randomly select an neural architecture
from search space A;
8: Score; < Calculate activation patterns c; by ob-

taining F(s;), then score the architecture F);(-) using
NCD;

9: if Scorepest > Score; then
10: Scorepest < Score;;

11: Fbest(') «— F(~);

12: end

13: end

14: Return Fpe:(-).
15: end procedure
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where E[w)] represents the expectation of the kernel weight
w.

Proof. Since the p(; . . .y in LN is calculated within the fea-
ture map dimensions C' x H x W, which can be formulated
as follows:
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where m‘(’:tf th) is the value of the output feature map re-

sulting from the convolution operation. Similar to the proof

of Theorem 4.1, w?gtf th) can be defined as:
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where we assume the input and output feature map have
same number of channel. Note that the 1‘&“?’ ;‘Z of every
channel are calculated by applying different filter kernel to
the same perceptive field of the feature map, and accord-

ingly, we have:
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By reformulating the T(i 5 a,p) WE Can rewrite Eq. 4 as
follows:

c K K
out ut
(lipz’a 0 Z Z Z x(waer bte)
e=ld=|-%] e=|-%]
> c
z = ¢ input
FEeatarre) = 2 Yoo -5 em |- 5D O TG mranin):
e=1
(5)
We notice that:
c
Z:lw“*d* - $le-1-5) = O Bl ©)

Consequently, by substituting Eq.5 and Eq.6 into Eq.2,
we can write:

Zf IZb 1ch 1Zd - szf:[—%J ‘%(i‘c‘a+d,b+e)
H-W '

~ t
& (i,c,atdbre) = Blw] - o(@l L L ).

Hiyye,:) =

()]

Therefore, Theorem 4.2 is proved.

A.3. Efficiency Analysis of SAM

Since SAM randomly masks each activation value by 0 with
probability «, it can speed up the network forward process
of AZP computation. As analysed in [19], when a filter is
applied to the local receptive field of the input feature map
to produce an output value, the computational cost R can
be formulated as:

R = dk : dk * Cin, (8)

where d}, is the size of the filter kernel, ¢;,, is the channel of
the input feature map. By utilizing SAM, approximately «
proportion of the input values within the local receptive field
are set to 0 and cut from the computation process. There-
fore, the computational cost R 4,7 can be modified as fol-
lows:

Rsam = (1 —«a) - dy - d - Cin- )
From the above analysis, we can find that SAM only re-
quires 1 — o times of the original computational cost during
convolution and brings high calculation efficiency to AZPs.

B. Detailed Experimental Settings
B.1. Experimental Settings

Search spaces. We use ten search spaces to validate the ad-
vantages of NCD. To the best of our knowledge, we are the
first work to comprehensively evaluate ten existing search
spaces in the NAS field. To be specific, DARTS search
space [30] contains 10'® architectures, and consists of 7 rep-
resentative operations: (1) zero, (2) skip connection, (3) 3 x
3 dilated separable convolutions, (4) 3 x 3 separable convo-
lutions, (5) 5 x 5 separable convolutions, (6) 5 x 5 dilated
separable convolutions, and (7) 3 x 3 average pooling layer.
Due to NAS-Bench-310 utilizing the same architectures as
DARTS search space, we do not provide the experiments on
NAS-Bench-310.

NAS-Bench-101 search space [57] contains 423624 ar-
chitectures, and consists of 3 representative operations: (1)
1 x 1 convolution, (2) 3 x 3 convolution, and (3) 3 x 3 max
pooling layer.

NAS-Bench-201 search space [13] contains 15625 ar-
chitectures, and consists of 5 representative operations: (1)
zero, (2) skip connection, (3) 1 x 1 convolution, (4) 3 x 3
convolution, and (5) 3 x 3 average pooling layer.

TransNAS-Bench-101-Mirco/Macro [14] consists of a
micro (cell-based, 4096 architectures) search space and
a macro (stack-based, 3256 architectures) search space,
which use 7 representative operations: (1) Zeroize, (2) skip
connection, (3) 1 x 1 convolutions, (4) 3 x 3 convolutions.

S1 search space uses a distinct set of only two operators
on each edge, which is generated by an offline process that
iteratively removes the least important operations from the



DARTS search space. S2 search space consists of 2 opera-

tions: (1) 3 x 3 separable convolutions, (2) skip connection.

S3 search space consists of 3 operations: (1) 3 x 3 separable

convolutions, (2) skip connection, (3) zero. S4 search space

consists of 2 operations: (1) 3 x 3 separable convolutions,

(2) Noise. The Noise operation replaces each value in the

input feature map with noise € ~ N(0, 1).

The MobileNet-like search space is modified by the ar-
chitecture of MobileNetV2 [42], which consists of Mo-
bileNet blocks. The main search component is the expan-
sion ratio at the depth-wise level, i.e., {1, 2, 4, 6}.
Evaluation Tasks. Four real-world tasks are used to vali-
date the effectiveness of NCD. The details are as follows:

* Image recognition tasks: We evaluate NCD in CIFAR-
10/100[26], ImageNet16-120[8] and ImageNet-1k [11]
datasets.

¢ Autoencoding task[25]: We evaluate NCD on a pixel-
level prediction task in Taskonomy dataset [58], which
reconstructs the image by obtaining the latent representa-
tion of the origin image with searched architecture.

¢ Scene classification task: We evaluate NCD in MIT
Places dataset [62].

¢ Self-supervised jigsaw puzzle task[25]: We evaluate
NCD in Taskonomy dataset [58].

Peer Competitors. To fairly compare the performance with

previous methods, in this paper, we only consider published

works for performance comparison, the papers from arXiv

are not compared according to the rule of ICCV 2025.

For NAS-Bench-201 search space with CIFAR-10/100,
and ImageNet16-120 datasets, we compare our method with
a wide scope of the state-of-the-art baselines, as follows:
(1) Params; (2) FLOPs; (3) Snip [1]; (4) Grasp [, 48]; (5)
Synflow [1, 47]; (6) ZenNAS [29]; (7) ZiCo [28]; (8) AZ-
NAS [27]; (9) SWAP [39]; (10) NWOT [35].

For NAS-Bench-101 search space with CIFAR-10
dataset, we compare our method with a wide scope of
the state-of-the-art baselines, as follows: (1) Params; (2)
FLOPs; (3) Snip [1]; (4) Grasp [1, 48]; (5) Synflow [1, 47];
(6) ZenNAS [29]; (7) ZiCo [28]; (8) AZ-NAS [27]; (9)
SWAP [39]; (10) NWOT [35].

Notably, ParZC [12] is the hybrid method, Auto-Prox
[51] is designed for Transformer, therefore, we do not com-
pare ParZC [12] and Auto-Prox [51] with our method on
NAS-Bench-201&101 search spaces.

For DARTS search space in CIFAR-10/100, we compare
our method with a wide scope of the state-of-the-art base-
lines, as follows: (1) ResNet18 [17]; (2) DenseNet-BC [21];
(3) AmoebaNet-A [64]; (4) NASNet-A [41]; (5) NASNet-A
[41]; (6) ENAS [40]; (7) SNAS [54]; (8) DARTS(2nd) [30];
(9) DARTS+PT [49]; (10) DARTS(1nd) [30]; (11) DARTS-
[9]; (12) FairDARTS-D [10]; (13) 8-DARTS [56]; (14) P-
DARTS [7]; (15) PC-DARTS [55]; (16) NASWOT [35];
(17) NASI-ADA [44]; (18) TENAS [5]; (19) Random; (20)

DARTS- [9]; (21) DARTS+PT [49]; (22) A-DARTS [37];
(23) FP-DARTS [50]; (24) DARTS-AER® [24]; (25) IS-
DARTS [16].

For TransNAS-Bench-101-Micro/Macro search space,
we compare our method with a wide scope of the state-
of-the-art baselines, as follows: (1) Grad_norm [1]; (2)
SNIP [1]; (3) Grasp [1, 48]; (4) Fisher [1, 48]; (5) Syn-
flow [1, 47]; (6) Zen-score [29]; (7) GradSign [61]; (8)
Params; (9) FLOPs; (10) ZiCo [28]; (11) SWAP [39]; (12)
NWOT [35].

For S1-S4 search spaces, we compare our method with
a wide scope of the state-of-the-art baselines, as follows:
(1) DARTS [30];(2) R-DARTS [59]; (3)PC-DARTS [55];
(4)DARTS- [9] ; (5) SDARTS [6]; (6) DARTS+PT [49].

For MobileNet-like search space, we compare our
method with a wide scope of the state-of-the-art baselines,
as follows: (1) PloxylessNAS [3]; (2) FBNet-C [53]; (3)
FairNAS-A [10]; (4) FairDARTS-D [10]; (5) RLNAS [60];
(6) GM+ProxylessNAS [20]; (7) OLES [23].

For AutoFormer search space, we compare our method
with a wide scope of the state-of-the-art baselines, as fol-
lows: (1) ViT-Ti [? ]; (2) NWOT [35]; (3) AutoFormer-T
[4]; (4) ViTAS-C [45]; (5) TE-TAS-T [63]; (6) Auto-Prox
[51]; (7) AZ-NAS [27]; (8) ParZC [12]. Notably, Auto-Prox
[51] utilizes evolution to search target proxy for CNNs,
ParZC [12] is a combination of evolution, random search,
reinforcement, gradient, and training-free for CNNs.

For OoD-ViT-NAS-Ti [18] search space with Ima-

geNetlk, ImageNet-A, ImageNet-R, ImageNet-D/Texture,
and ImageNet-D/Material datasets, we compare our method
with a wide scope of the state-of-the-art baselines, as fol-
lows: (1) Snip [1]; (2) Grasp [1, 48]; (3) MeCo; (4) CroZe;
(5) DSS; (6) Auto-Prox [51]; (7) NWOT [35].
Parameter Settings. For searching on the DARTS,
TransNAS-Bench-101-Micro/Macro, NAS-Bench-201 and
NAS-Bench-101, S1-S4, MobileNet-like search spaces, we
use random search as our experimental strategy, and the ex-
perimental settings are the same as AZ-NAS [27], which
sample 3000 candidate architectures utilized for evaluation.
The final architecture is selected with the highest value
scored by our method.

For the performance in terms of accuracy on TransNAS-
Bench-101-Micro/Macro, NAS-Bench-201, and NAS-
Bench-101 search spaces, we directly obtain by retrieving
the final architecture from benchmarks. Due to DARTS
and MobileNet-like search space not providing such bench-
marks, we need to retrain the searched architecture in spe-
cific datasets. The details are as follows:

(1) For training searched architecture on the DARTS
search space in CIFAR-10/100 and ImageNet datasets, we
use the same experimental settings as used with [30].

(2) For training searched architecture on the S1-S4
search spaces in CIFAR-10 dataset, we use the same ex-



Table 1. The test error (%) on S1-S4 search space in CIFAR-10 dataset.

Search space  DARTS [30] R-DARTS(DP) [59] R-DARTS(L2) PC-DARTS[55] DARTS+PT [49] DARTS+ES [30] DARTS+ADV [30] SDARTS+ES [6] SDARTS+ADV [6] DARTS- [9] NCD-NWOT (o = 0.5)
S1 384 3.11 278 3.11 3.50 3.01 3.10 278 273 2.68

S2 4.85 3.48 331 3.02 2.79
S3 3.34 2.93 251 2.51 2.49
S4 7.20 3.58 3.56 3.02 2.64

2.52(0.16)
3.26 335 2.75 2.65 2.63 2.62/(0.01)
2.74 2,61 2.53 2.49 242 2.59
3.71 4.84 2.93 2.87 2.86 2.83/(0.03)

Table 2. Correlation on OoD-ViT-NAS-Ti search space.

Method ImageNetlk ImageNet-A  ImageNet-R  ImageNet-D/Texture = ImageNet-D/Material
SNIP 0.38 0.51 0.55 -0.06 0.11
Grasp -0.03 -0.06 -0.07 -0.01 0.03
MeCo 0.48 0.40 0.33 0.09 0.08
CroZe 0.40 0.54 0.60 0.01 0.12
DSS 0.62 0.82 0.81 0.02 0.17
AutoProx 0.82 0.78 0.15
NWOT 0.75 0.74 0.11 0.12
NWOT+SAM(a = 0.9)  0.771(0.02) 0.78 0.121(0.01)

perimental settings as used with PC-DARTS [55].

(3) For training searched architecture on the MobileNet-
like search space in ImageNetlk dataset, we use the same
experimental settings as used with RLNAS [60].

(4) For training searched architecture on the AutoFormer
search space in the ImageNetlk dataset, we use the same
experimental settings as used with TF-TAS-T [63].
Evaluation metrics. We use Top-1/5 (%) accuracy or
Test Err. (%), Search Cost (GPU-days/hours), Runtime
(ms), Mean Average Precision (mAP), Mean Intersection
over Union (mloU), number of parameters (M), FLOPs
(M), the correlation coefficients in terms of Spearman’s

€ [-1, 1], Structural Similarity (SSIM), and COCO-style
Average Precision (AP), as our evaluation metrics.
Codes. We implement our paper using Python 3.8 and Py-
Torch 2.2.0 with CUDA 12.1.

C. Effectiveness on S1-S4 Search Spaces

To validate the effectiveness of our method on S1-S4 search
spaces, we conduct the experiment on the standard bench-
marks from R-DARTS (S1-S4). R-DARTS includes four
search spaces, i.e., S1, S2, S3, and S4. In this experiment,
the optimal architecture is obtained by selecting the high-
est value searched by our method, after that, we train the
searched architecture in the CIFAR-10 datasets by utiliz-
ing the same hyper-parameter settings in R-DARTS. As de-
picted in Table 1, we can observe that our method achieves
optimal accuracy on S1, S2, and S4, which validates the
effectiveness of our method on S1-S4 search spaces.

D. Strong Generalizability on OoD-ViT-NAS-
Ti Search Space

To further scrutinize the generalizability of our method
for vision transformer under Out-of-Distribution (OoD)
shifts, we perform the empirical validation on OoD-ViT-
NAS-Ti [18] search space in ImageNetlk, ImageNet-
A, ImageNet-R, ImageNet-D/Texture, and ImageNet-
D/Material datasets. To be specific, we report the results

over 5 independent runs. Notably, vision transformer uses
LN to accelerate model learning speed and improve train-
ing stability, therefore, we only compare the Spearman’s
p correlation between SAM with AZP (i.e., NWOT) and
other zero-cost proxies. As depicted in Table 2, we can
clearly observe that our method obtains superior perfor-
mance in terms of Spearman’s p correlation under OoD
shifts. In particular, “NWOT+SAM” achieves a maximum
0.02% higher Spearman’s p in ImageNetlk and a maxi-
mum 0.01% higher Spearman’s p in ImageNet-D/Texture
than state-of-the-art methods (i.e., DSS, AutoProx). Those
results demonstrate that our method possesses strong gen-
eralizability under OoD shifts.

E. Visualization of Searched Architectures

For better understanding, the visualization of architectures
discovered by our NCD is also provided in Fig. 1 and
Fig. 2. For DARTS search spaces, the optimal architec-
tures discovered by NCD-NWOT in the CIFAR-10 dataset
are shown in Fig. la and Fig. 1b. In addition, Fig. 2a
and Fig. 2b show the optimal architectures found by NCD-
SWAP in the CIFAR-10 dataset. As shown, we can clearly
find that optimal architectures in the DARTS search space
commonly possess more inception structures and skip con-
nections, which can be sufficiently explored by our NCD-
NWOT and NCD-SWAP.

F. More Discussion and Experimental Valida-
tions

F.1. Validation of Negative Correlation on More
Search Spaces

Changes of correlations (negative correlation) of AZP are
a general issue for NAS search spaces and datasets. Due
to the main page limit, we only provide the visualization
on the representative NAS-Bench-201 search space in the
CIFAR-10 dataset. To enhance our statement, we provide
additional results on TransNAS-Bench-101 (as shown in



Table 3. Accuracy comparison between NIR and AZP methods.

Tras101/Micro-Autoencoding

46.40£0.70
51.78£3.687(5.18)

Method NB101-CIFAR10
NWOT 93.16£0.36
NWOT+NIR  93.32-£0.274(0.16)
SWAP 90.51+2.08
SWAP+NIR  92.7741.241(2.26)

43.09+1.69
53.2942.321(10.20)
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Figure 1. (a) and (b) are the best cells found by NCD-NWOT on DARTS search spaces in CIFAR-10 dataset with model size 4.4M.

Fig. 3), validating our statement.

F.2. Further Discussion of NIR in Training-free
NAS

To further scrutinize the effectiveness of the proposed NIR
in training-free NAS, we conduct in-depth analysis from
empirical validation on NB201 with NB101 with CIFAR10,
and Tras101 with Micro-Autoencoding. To be specific, we
report the results over 5 independent runs. First, we only ob-
serve the superiority of LN for stability in AZP-based NAS
during proxy evaluation. Second, additional experiments
(as shown in Table 3) show the accuracy of architectures
found with NIR better than BN in mainstream tasks. In the
future, we will further study LN vs. BN in beyond proxy
evaluation to better understand their behaviors.

F.3. Discussion about different activations

Our NCD is applicable to various activations, since its core
idea is not ReLU-specific. As shown in Fig. 4, when
the non-linearity level of GELU and LeakyReLU reaches
the turning point, AZPs still show negative correlation.
First, the increase in the non-linearity level of GELU and
LeakyReLU is also brought by the sum of activation val-
ues, and the decrease in the scores of architectures with
Conv3x3 to Conv5x5 can support this conclusion, as each
output value of Conv5x5 is summed with more activation
values than Conv3x3. Consequently, our method for nega-
tive correlation still works, since NCD’s core idea is to re-

duce the quantity of activation values included in the sum so
that the non-linearity level can return to before the turning
point. Additionally, experiments on the Autoformer also
show the effectiveness of NCD for the GELU activation
pattern. Since modern architectures employ non-saturated
activation functions with forms similar to ReLLU, such as
GELU and LeakyReLU mentioned, we believe the problem
presence and analysis can be broadly applicable.

F.4. Further discussion about other normalizations

In this paper, NIR aims to reduce the number of activation
values involved in the sum of normalization. In BN and
IN, the mean x can be seen as a weighted sum of activation
values. For LN, each activation value is weighted by the ex-
pectation of weights participating in the calculation of input
values, which is zero since the architecture is initialized.
In GN, activation values are weighted by the expectation
of weights participating in the calculation of input values
within the corresponding group. As the number of groups
decreases, more weights are included, and the expectation
approaches zero. When there’s one group, GN becomes LN.
Thus, NIR is necessary in search spaces with BN, GN, and
IN. The analyses of GN and IN follow Theorems 4.1 & 4.2,
with detailed proofs to be added in the Appendix. Addi-
tional results ( As shown in Table 4) validate our statement.
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Figure 3. The scores of SWAP(top) and NCD-SWAP(bottom) on the Trans101-Micro-Jigsaw.
G.1. Design & Search Neural Architecture

F.5. Scalability of NCD

App. A.2 shows SAM can proportionally reduce computa-
tional cost during the network forward process when AZP
scoring, whose acceleration effect is similar to network
pruning. This efficiency advantage enables AZPs to be ap-
plied to larger search spaces. Our analysis indicates that
deeper or wider architectures may require a higher mask
rate «, as later layers generate more nonlinear features that
are more likely to exceed the turning point when « is too
small. Table 5 shows that NCD can generalize to larger
model sizes.

G. Related Work

In this section, we introduce the design and search ap-
proaches of network architecture, zero-cost proxies, and
NAS methods that are most relevant to this work.

NAS can automatically design high-performance neural
architecture for real-world tasks (i.e., image recognition,
scene classification) by adopting reinforcement learning
[3, 41, 46], and evolutionary algorithm [34, 40, 64]. How-
ever, those methods suffer from huge computational bud-
gets due to training networks iteratively. To reduce the
search costs, one-shot approaches [2, 15, 32] are proposed,
which use a weight sharing supernet to reduce the train-
ing time of each potential subnet. Moreover, gradient de-
scent based methods [30] are proposed, where the network
weights and architecture parameters are optimized alter-
nately in a differentiable way, including DARTS [30], PC-
DARTS [55], IS-DARTS [16], etc. For example, IS-DARTS
[16] reduces the search cost to 0.42 GPU Days on DARTS
search space in CIFAR-10 dataset. Although differentiable
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Table 4. A comparison between normalizations and our NIR (LN) of AZPs.

Method -ImageNet - as icro-Autoencodin;
NWOT+BN . . . . k .
NWOT+GN(group=16) 42.98+3.85 92.2440.01 47.59+0.38
NWOT+GN(group=8) 43.13+1.48 93.3740.29 48.68+0.42
NWOT+IN 36.831+1.63 91.324+1.59 37.021+0.31
NWOT+Dropout 40.55+ 4.15 91.4140.18 44.01+0.62
NWOT+NIR 43.75+£1.91 93.484+0.50 51.784+1.68
SWAP+BN R R . R . .
SWAP+GN(group=16) 37.4242.01 91.3540.39 46.14+0.17
SWAP+GN(group=_8) 41.80+1.96 92.314+0.48 46.56+0.23
SWAP+IN 21.844+1.62 86.354+0.33 35.01+0.51
SWAP+Dropout 34.614+3.79 92.354+0.33 45.10+0.73
SWAP+NIR 44.07+1.36 93.014+0.54 53.2941.32

methods show remarkable performance in terms of accu-
racy and search speed, they still need to train a supernet for
each dataset. In addition, differentiable methods suffer from
the performance collapse issue, which will significantly af-
fect the performance. This highlights the need to liberate
NAS from aforementioned bottlenecks.

G.2. Efficient and Training-free NAS

To facilitate the development of the NAS community, sev-
eral NAS benchmarks (i.e., NAS-Bench-101 [57], NAS-
Bench-201 [13]) are proposed for computer vision tasks
(i.e., image classification[43]), which include the ground
truth of each candidate architecture in the target vision
task. Moreover, TransNAS-Bench-101-Mirco/Macro [14]
is built, which provides the ground truth of each candi-
date architecture across seven tasks, including autoencoding
task, scene classification task, self-supervised jigsaw puzzle
task, etc. Grounded in these benchmarks, predictor-based
methods [31, 33, 52] are proposed, which can directly pre-
dict the accuracy of candidate architectures by building a
GCN-based predictor.

Recent Training-free NAS methods significantly reduce
computational costs by measuring the expressibility of neu-
ral architectures without training. Essentially, training-free

NAS methods utilize some zero-cost proxies, predicting the
accuracy ranking of neural architectures without training.
These methods can be categorized into four groups based
on how to represent the architecture. (1) Gradient-based
methods utilize the indicators of pruning to estimate the ac-
curacy ranking of neural architectures, including Snip [1],
Grasp [1, 48], Synflow [, 47]. For example, AZ-NAS
[27] explore the ensemble zero-cost proxies in the views
of expressivity, progressivity, trainability, and complexity,
which provide an ensemble perspective to analyze how to
design zero-cost proxy. However, those methods still re-
quire high search costs due to relying on additional back-
ward or forward passes with inputs. (2) Theory-based
methods [5, 36] use neural tangent kernel (NTK) [22] as in-
dicator to assess expressivity of neural architectures. How-
ever, calculating NTK is difficult and needs large computa-
tional resources, making it hard to deploy those methods on
large networks and datasets. (3) Statistical-based methods
utilize statistical information (i.e., number of parameters
or floating-point operations) of the architecture to measure
the accuracy ranking. Although those methods seem very
simple without backward or forward passes, which obtain
better performance than well-designed proxies (i.e., Grasp,
ZiCo [28]). (4) Activation-based zero-cost proxies (AZP)



Table 5. Scalability of NCD to larger model sizes on AutoFormer.

AZ-NAS ParZC NWOT+SAM(a =0.9)

Base search space Swin-B NWOT AutoFormer-B GLiT-B  TF-TAS-B  Auto-Prox
Param (M) 88.0 67.2 54.0 54.0

Search Cost (GPU Days) - 0.03 24 -

Top-1 (%) 83.5 83.6 82.4 82.3

54.0 - 54.1 - 534
0.5 - 0.07 - 0.02
82.2 - 82.3 - 84.5

[35, 38] are proposed by analyzing the activation patterns
of candidate architectures, which achieve superior perfor-
mance in terms of accuracy and search costs without addi-
tional gradient descent. However, we identify a distinctive
negative correlation issue of AZP, which significantly im-
pacts the accuracy of AZP-based NAS. In this paper, we
overcome this issue and outperform SOTA methods on 12
search spaces with 4 tasks by proposing a simple yet effec-
tive negative correlations-defied AZP-based NAS. Experi-
mental results demonstrate that our approach successfully
addresses the negative correlation issue in AZP and signifi-
cantly improves performance across various benchmarks.
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