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A. Theoretical Framework of Multi-Layer
Null Space Projection

Optimization objective for continual learning. Consider
a deep neural network with L layers, where the parameters
of the l-th layer are represented by Wl, the input by xl−1,
and the output is given by xl = Wlxl−1. To prevent catas-
trophic forgetting when learning a new task, it is necessary
to ensure that the output features for the old tasks T1:t−1

remain unchanged. Mathematically, this requires satisfying
the following constraints:

∀l ∈ {1, . . . , L}, (Wl +∆Wl)Xl−1 = WlXl−1, (1)

where Xl−1 = [xl−1
1 , . . . ,xl−1

N ] represents the matrix of
output features from the (l − 1)-th layer for the old tasks.
Equivalently, the parameter updates must satisfy:

∆WlXl−1 = 0 ∀l. (2)

This implies that the residual term should tend towards zero.
The optimization problem can thus be formalized as:

min
∆W

Lnew(W +∆W) s.t. ∆WlXl−1 = 0 ∀l, (3)

where Lnew denotes the loss function for the new task.

Limitations of non-zero residuals. Single-layer projection
methods focus solely on imposing constraints on each indi-
vidual layer (e.g., the l-th layer) such that ∆WlXl−1 = 0,
ignoring the influence of other layers. If the residual term
for the current layer does not strictly tend towards zero, i.e.,
∆WlXl−1 ̸= 0, then WlXl−1 ̸= Wl−1Xl−1, and subse-
quent parameter updates propagate forward, gradually ac-
cumulating and ultimately causing the final output feature
xL to deviate from its original value, leading to catastrophic
forgetting. The accumulated non-zero residuals ∆xL in the
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Figure 1. Residual comparisons of different layers on CIFAR100.

final output features directly degrade the network’s perfor-
mance on old tasks. For an old task input x0, the perturbed
output becomes:

xL
new = xL +∆xL, (4)

where xL was originally mapped to the correct prediction
(e.g., class label). The residual ∆xL disrupts this mapping,
causing misclassification or regression errors. Mathemati-
cally, if the old task loss Lold is sensitive to xL (e.g., cross-
entropy loss), then:

Lold(W+∆W) ≈ Lold(W)+∇xLLold·∆xL+O(∥∆xL∥2),
(5)

where the linear term ∇xLLold ·∆xL dominates the forget-
ting. This is catastrophic forgetting in action: small output
residuals induce large loss increases for old tasks.

Cumulative non-zero residuals also harm new task learn-
ing. Non-zero residuals alter the parameter manifold, steer-
ing updates away from the optimal subspace for the new
task. For example, if the new task gradient ∇WLnew is pro-
jected onto a perturbed null space (due to prior residuals),
the effective update direction becomes suboptimal:

∆Wl
eff = PNull(Xl−1+∆Xl−1)∇WlLnew, (6)

where PNull(·) is a corrupted projection matrix. This reduces
learning efficiency.
Common Null Space. Define the null space of each layer
as:

Null(Xl−1) =
{
∆Wl | ∆WlXl−1 = 0

}
. (7)
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Multi-layer projection requires that the parameter updates
simultaneously belong to the null spaces of all layers, i.e.,

∆Wl ∈ Null(Xl−1) ∀l. (8)

By projecting gradients onto each layer’s null space sequen-
tially, the final update direction becomes:

∆w = PLPL−1 · · ·P1g. (9)

Theoretical derivation of multi-layer projection. If
the objective of single-layer null space projection is
∆Wlxl−1 = 0, then multi-layer null space projection auto-
matically satisfies this goal, as it constrains the gradients to
the common subspace of all layers’ null spaces. Therefore,
by further restricting the direction of parameter updates,
multi-layer null space projection offers enhanced protection
against catastrophic forgetting, ensuring that the residual
terms more closely approach zero.

Experimental validation of residual reduction. To val-
idate the effectiveness of multi-layer gradient projection
in suppressing catastrophic forgetting, we conduct a layer-
wise analysis of residual terms in the adapter-based CLIP
framework. As depicted in Figure 1, during continual learn-
ing, we compared the residuals between the inputs of the old
tasks and the parameters of the current task. Specifically,
considering the semantic discriminativeness of the model’s
deep-layer features, we visualized the average residuals of
the last two adapter layers, ∆Wt · xt−1. The experimental
results demonstrate that as the projection strategy evolves
from single-layer projection to multi-layer projection, and
further to DMNSP, the magnitude of the residuals gradu-
ally approaches zero. This validation underscores the ne-
cessity of multi-layer projection in visual-language contin-
ual learning and highlights the advantages of DMNSP over
single-layer or static projection methods.

B. More Details about Metrics
Let at,j ∈ [0, 1] represent the accuracy evaluated on the
held-out test set of the j-th task, with j ≤ t, after incremen-
tally training the network from tasks 1 to t. The average
accuracy at task t is defined as

At =
1

t

t∑
j=1

at,j . (10)

Here, at,t is denoted as “Last” accuracy and At is denoted
as “Avg.” accuracy. We quantify the forgetting of the j-th
task after the model has been incrementally trained up to
task t (t > j) as follows:

f t
j = max

l∈{1,··· ,t−1}
(al,j − at,j) , ∀j < t. (11)
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(a) Accuracy and forgetting curves on CIFAR100 with 10 tasks.
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(b) Accuracy and forgetting curves on CIFAR100 with 20 tasks.
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(c) Accuracy and forgetting curves on CIFAR100 with 50 tasks.

Figure 2. Comparison of accuracy and forgetting curves between
our method and three other adapter-based approaches on the CI-
FAR100 CIL with various tasks.

Note that f t
j ∈ [−1, 1] is defined for j < t. Moreover, by

normalizing relative to the number of previously seen tasks,
the average forgetting rate at the k-th task is written as

Fk =
1

k − 1

k−1∑
j=1

fk
j . (12)

f t
t is denoted as “Last” forgetting rate and Ft is denoted as

“Average” forgetting rate.

C. More Accuracy and Forgetting Curves
In Figures 2 and 3, we present comprehensive compari-
son graphs of the accuracy and forgetting rate curves un-
der six CIL settings within the CIFAR100 and TinyIma-
geNet datasets. It can be seen that the two methods in-
corporating DMNSP, namely “MoE4Adapters + DMNSP”
and “Adapter-based CLIP + DMNSP”, are relatively high
in the accuracy curve and relatively low in the forgetting
rate curve. This indicates that our methods have excellent
plasticity and strong stability.

We introduce two new metrics, Forward transfer (FWT)
and Backward transfer (BWT), to measure the ability of our
method to transfer knowledge. Let at,j ∈ [0, 1] represent
the accuracy evaluated on the held-out test set of the j-th
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(a) Accuracy and forgetting curves on TinyImageNet with 5 tasks.
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(b) Accuracy and forgetting curves on TinyImageNet with 10 tasks.
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(c) Accuracy and forgetting curves on TinyImageNet with 20 tasks.

Figure 3. Comparison of accuracy and forgetting curves between
our method and three other adapter-based approaches on the Tiny-
ImageNet CIL with various tasks.

task, with j ≤ t, after incrementally training the network
from tasks 1 to t. As shown below,

FWT =
1

t− 1

t∑
i=2

(ai−1,i − a0,i) (13)

BWT =
1

t− 1

t−1∑
i=1

(at,i − ai,i). (14)

FWT represents the influence that learning a task t has on
the performance on a future task. BWT represents the in-
fluence that learning a task t has on the performance on a
previous task. As depicted in Figures 4 and 5, in most ex-
periments, the methods incorporating DMNSP have demon-
strated relatively superior FWT capability, indicating that
the DMNSP strategy can provide good zero-shot learning
potential. Additionally, the DMNSP-incorporated methods
achieve high efficacy in BWT, reflecting the effectiveness
of the DMNSP strategy in countering forgetting.

D. More Hyperparameter Analysis
Furthermore, as shown in Figure 6, we also explored the pa-
rameter ζ that controls the numerical range of the dynamic
projection coefficient. Given that the gradient values dimin-
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(a) FWT and BWT curves on CIFAR100 with 10 tasks.
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(b) FWT and BWT curves on CIFAR100 with 20 tasks.
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(c) FWT and BWT curves on CIFAR100 with 50 tasks.

Figure 4. Comparison of FWT and BWT curves between our
method and three other adapter-based approaches on the CI-
FAR100 CIL with various tasks.

ish after each projection, it is necessary to moderately ex-
pand the numerical range. We observed that when ζ was set
to 30, good performance could be achieved on both datasets.
Based on this empirical observation, we fixed ζ at 30 and
applied it uniformly across all experimental settings.

Additionally, we provide experimental insights into the
selection of hyperparameters p and q. As illustrated in Ta-
ble 1, given that our method focuses on approximating the
null space and preserving the distinctiveness of null-space
similarity across layers, we performed comparative experi-
ments within the range of 0.5% to 10%. The experimental
results indicate that optimal performance is achieved when
both p and q are set to 1%. This demonstrates the effective-
ness and robustness of our method under carefully selected
hyperparameters.

E. More Experimental Results
We use the maximum value of the logits output by the multi-
classifier head as the method for GPM and TRGP to de-
termine the task ID. Regarding the gradient memory up-
date part, we have aligned both methods with our update
strategy. On one hand, this can help both methods obtain
more vector bases through updates; on the other hand, it can
further align the memory consumption, thereby enabling a
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(a) FWT and BWT curves on TinyImageNet with 5 tasks.
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(b) FWT and BWT curves on TinyImageNet with 10 tasks.
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(c) FWT and BWT curves on TinyImageNet with 20 tasks.

Figure 5. Comparison of FWT and BWT curves between our
method and three other adapter-based approaches on the TinyIma-
geNet CIL with various tasks.
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Figure 6. Impacts of ζ on the average accuracy and the last accu-
racy in CIL with 10 tasks.

Components 10 subset 20 subset 50 subset
Avg. ↑ Last ↑ Avg. ↑ Last ↑ Avg. ↑ Last ↑

p = 1%

q = 0.5% 87.01±0.1 78.83±0.16 84.83±0.08 75.97±0.05 83.04±0.11 73.97±0.16

q = 1% 87.59±0.11 79.94±0.16 85.29±0.20 76.96±0.13 83.66±0.18 74.58±0.15

q = 5% 87.15±0.23 79.8±0.11 84.35±0.06 76.32±0.2 83.31±0.02 73.58±0.13

q = 10% 86.81±0.11 79.46±0.2 84.33±0.19 76.04±0.12 83.65±0.07 73.68±0.11

q = 1%

p = 0.5% 86.89±0.14 78.96±0.09 84.93±0.11 76.03±0.15 82.89±0.16 73.88±0.21

p = 1% 87.59±0.11 79.94±0.16 85.29±0.20 76.96±0.13 83.66±0.18 74.58±0.15

p = 5% 87.01±0.07 79.72±0.2 84.44±0.19 76.2±0.07 83.47±0.14 73.32±0.12

p = 10% 86.95±0.2 79.54±0.14 84.33±0.22 76.08±0.15 83.56±0.11 73.58±0.18

Table 1. Hyperparameter selection comparison experiments. p and
q represent the degree of approximation to the principal space and
the degree of similarity measurement, respectively.

more fair comparison. We conducted more experiments on
fine-grained datasets such as CUB (divided into 5 and 10
tasks) and StanfordCars (divided into 7 and 14 tasks). As
shown in Table 2, the integration of the DMNSP strategy
enabled the model to achieve superior performance, indicat-

Method Venue CUB-200 StanfordCars
T = 5 T = 10 T = 7 T = 14

Last Average Last Average Last Average Last Average

MoE4Adapters CVPR’24 53.47 65.74 52.12 66.33 64.59 75.29 63.22 75.14

Adapter-based + GPM - 57.44 70.64 52.74 67.99 68.96 81.49 65.33 77.14
Adapter-based + DMNSP (Ours) - 59.03 72.55 54.75 70.05 70.60 82.46 68.52 80.38

Table 2. Comparison on fine-grained datasets under CIL.

Method Venue CIFAR100 ImageNet-R
Last Average Last Average

MoE4Adapters CVPR’24 77.52 85.21 65.77 72.80
CLAP4CLIP NeurIPS’24 78.21 86.13 79.98 85.77
RAPF ECCV’24 79.04 86.19 80.28 85.58
PROOF TPAMI’25 79.05 86.70 80.10 85.32

Adapter-based + GPM - 79.14 86.73 80.11 86.18
Adapter-based + DMNSP (Ours) - 79.94 87.59 81.94 87.49

Table 3. Comparison with more multimodal methods under CIL.

ing the effectiveness of DMNSP for fine-grained datasets.
Furthermore, we conducted additional comparisons with
more vision-language-based methods. As shown in Table
3, DMNSP still achieves superior performance in 10-task
CL benchmarks.


