A. Experimental Setup in Detail

We describe the experimental setup used to evaluate our
input-adaptive inference mechanism in detail. We imple-
mented our strategy on top of the codebases provided by the
authors of HAMT [10], DUET [11], and VLN-CEC)BERT
[35]. During inference, instead of using cached image
features, we integrate the original encoder (ViT-B/16 [16]
for HAMT and DUET and ResNet-152 [26] for VLN-
CECBERT) to process the images directly.

Hardware and software. We run our experiments on a
machine equipped with an Intel Xeon processor with 48
cores, 64GB of DRAM, and 8 NVIDIA A40 GPUs, with all
inference tasks performed on a single GPU with a batch size
of 1. Following the original HAMT study, we use Python,
PyTorch, and Cuda for all experiments, with versions in ac-
cordance with the original studies [10, 11, 35]. For GFLOPs
calculations, we use the Python library thop'.

Datasets. We describe the benchmarks we use in detail:

¢ R2R [1] is based on Matterport3D [7], containing 10,567
panorama views taken from 90 photo-realistic houses.
The dataset includes 7,189 shortest-path trajectories, each
of which is associated with 3 natural language instruc-
tions. The training, validation (seen), validation (unseen),
and test (unseen) sets include 61, 56, 11, and 18 houses,
respectively. The validation (seen) set consists of houses
in the training set, used to check the generalization sta-
tus of a model during training, while the sets marked as
‘unseen’ are the houses not in the training set.

e R2R-Back [10] requires the agent to return to its starting
point after reaching the destination. To complete the task,
the agent must remember its navigation history. A return
command is appended to each R2R instruction, and the
reversed path is provided as guidance for the return trip.

* R2R-Last [10] uses only the last sentence from the orig-
inal R2R instructions to describe the destination.

* REVERIE [47] provides high-level instructions, closer
to those given by humans, replacing the step-by-step
instructions of R2R. Instead of navigating to a target
location, the agent is required to identify and localize the
target object upon arrival, making the task more complex
and realistic. The dataset includes 4,140 target objects,
which are categorized into 489 distinct groups.

¢ CVDN [53] requires the agent to navigate based on long,
potentially unclear instructions. The agent interacts with
a navigator through question and answer dialog to clarify
and complete the task. In total, it has 2,050 human-
human navigation dialogues, consisting of over 7,000
navigation trajectories accompanied by question-answer
interactions, covering 83 matterport3D houses.

* SOON [66] is similar to REVERIE but contains longer
and more detailed instructions. The average length of

Uhttps:/pypi.org/project/thop

these instructions is 47 words, with path lengths varying
from 2 to 21 steps. It requires the agent to navigate by
understanding the relationship between objects in the
environment to accurately locate the target object.

* R2R-CE [36] is a continuous version of R2R supported
by the Habitat simulator. To generate the dataset, Krantz
et al. convert the static panoramic scene data in Matter-
port3D into a continuous environment using mesh-based
3D reconstructions. R2R trajectories are then transferred
by mapping their nodes to the closest navigable locations
on the reconstructed mesh. Non-navigable nodes (e.g.,
those placed on furniture or spanning disjoint regions)
were filtered out. The final dataset consists of 4475 suc-
cessfully transferred trajectories, each paired with the
original R2R instruction set. Note that unlike the original
R2R setting, where agents teleport between nodes, R2R-
CE requires agents to navigate using low-level actions
such as moving forward and turning.

B. Optimal Hyperparameters for Adapting
MuE

44

42

40

Cosine Similarity

4,300

Performance (SR)

— Performance (SR)

VAN NS sk 4,250 ~
s --- GFLOPs 035
36"

4,200 s
0.99 0.992 0994 0996 0.998 «
Threshold Layer Comparison

Figure 6. Comparison of perfor- Figure 7. Cosine similarity
mance (in SR) and GFLOPs in between adjacent layers of
MuE across different thresholds. ViT used in HAMT.

To best evaluate MuE on VLN tasks, we perform a hy-
perparameter sweep over the early-exit threshold. Figure 6
presents the performance (in SR) and GFLOPs across dif-
ferent early exit thresholds applied to the MuE version of
ViT used in the HAMT agent, tested on the R2R dataset.
The lowest threshold we report is 0.99, as lower thresholds
caused a dramatic drop in performance (more than 50%). As
the threshold increases, the success rate of the MuE agent
increases substantially but at the cost of computational sav-
ings. Even for thresholds close to 1, meaning that the ViT
is using a majority of its layers for each input, we still see a
large performance drop compared to the baseline agent. As
we discuss in Sec 3.2, this is likely because MuE statically
applies early-exits, causing it to under-process important
components of the panorama such as navigable views.
Why does MuE underprocess important views? The intu-
ition behind MuE [51] is that the activations of Transformer-
based vision models saturate, where their similarity between

layers peaks early on, and is maintained at future stages
of computation, suggesting a lack of new/useful informa-
tion. MuE then exploits this property to skip the later layers
without a significant loss in performance. So, for MuE to
be successful, the similarity of activations must sufficiently
saturate and not decrease at later layers. However, as shown
in Figure 7, the necessary saturation pattern is not observed
in the VLN setting. The cosine similarity peaks between
layers 7 and 8 but then decreases for all future layers. This
explains the significant performance drop when MuE is di-
rectly applied to VLN agents, as it consistently early-exits
despite saturation not being achieved.

Algorithm 2 SimHash Algorithm

Input: a current view v;
Output: a binary hash key
1: function HASH(v;)
2: key «— @

3: for each hp in Hyperplanes do

4: sign < DotProduct (hp,v;)

5: hash_val «— (sign > 0) © converts to binary
6: key «— key + hash_val

7: end for

8: return key

9: end function
Input: a hash table h, a current view v;, an embedding e;
Output: a hash table h
10: function ADDTOHASHTABLE(h, v;, €;)
11: key < Hash(v;)
12: h < InsertToHashTable(key,v;,e;)
13: return h
14: end function
Input: a hash table h, a current view v;
Output: an embedding e;
15: function FINDSIMILAR(h, v;)

16: Smaz — —1

17: key <« Hash(v;)

18: bucket — h.get(key)

19: for each (Veandidate, €candidate) in bucket do
20: s «— CosineSimilarity(v;, Veandidate)
21: if s > 5,4, then

22: Smazx < S

23: €best <~ €candidate

24: end if

25: end for

26: if s,,00 > threshold then

27: €i < €hest

28: else

29: € — I

30: end if

31: return e;

32: end function

C. Our LSH Algorithm in Detail

A core mechanism we introduce in Sec 3.2.3 is our SimHash
algorithm, used to avoid reprocessing previously seen and
similar images. Algorithm 2 details our implementation.
(line 1-9) Hashing RGB vectors. Given an image, we first
hash the raw RGB vector into a short binary encoding using
random projection [3, 8]. The algorithm calculates the dot
product between the image vector and each hyperplane. If
the dot product is positive, it assigns a binary value of 1,
otherwise it assigns 0. These binary values are sequentially
appended to form a complete binary hash key. The length
of the hash key is determined by the number of hyperplanes
used in the projection.

(line 10-14) Adding embeddings to the hash table. This
function is used to insert processed images and their corre-
sponding embeddings into the hash table for future use.
(line 15-32) Retrieving a similar embedding. This function
takes an image we have not yet processed and tries to find
a suitable embedding candidate. We first obtain all embed-
dings with images similar to the current image by hashing
it into its binary encoding and accessing the corresponding
bucket in the hash table. We then loop through all images
associated with the similar embeddings and find the one
yielding the highest similarity score (in our main experi-
ments, the score is computed using cosine similarity). If this
score exceeds our threshold hyperparameter, we return the
associated embedding; otherwise, we return nothing.
Running the algorithm. We employ the above three func-
tions to run SimHash on an arbitrary panorama. For each
extended navigable view (other views are omitted and ex-
plained in Algorithm 1), we attempt to use a high-similarity
embedding from the hash table. If it exists, we reuse this
embedding for the current view and continue to the next. If
not, we need to process the view using the ViT adapted for
MuE, and then add the image and its embedding to the hash
table. After processing the entire panorama, we return the
set of final embeddings to be used for agent navigation.
Storage overhead analysis. Here, we consider the storage
overhead necessary to deploy our hashing algorithm on VLN
agents. Our LSH technique stores pairs of images and em-
beddings. In the benchmarks we consider, these images are
of size 3x224x224 (Matterport3D) or 3x480x640 (Habitat).
The embedding size depends on the model: 197x768 for
HAMT and DUET (the number of ViT patches times the
model’s hidden dimension) and 2048 for VLN-CE C)BERT
(the hidden dimension of ResNet-152). These are stored
in full-precision floating-point format (4 bytes per value),
resulting in (3 x 224 x 224 4+ 197 x 768) x 4 ~ 1.2 MB for
HAMT and DUET and (3 x 480 x 640+2048) x4 ~ 3.7 MB
for VLN-CEC)BERT per cached pair. For standard VLN, the
longest navigation route was ~12 steps (from R2R-Back).
Assuming caching of all 36 images per panorama, the worst-
case storage overhead is 522.7 MB. However, in practice,

most tasks involve 57 steps, and we cache at most 14 images
per step, yielding a more typical overhead of 84.7-118.6 MB.
For continuous VLN, the longest navigation route is ~130
steps, and we cache at most 6 views, leading to a worst-case
overhead of 2.9 GB. The average trajectory length is 56 steps,
with about 3 views cached per step, resulting in an average
overhead of 609.6 MB. Given that modern DRAM sizes are
orders of magnitude larger, this storage overhead remains
manageable for practical deployment.

D. Full Standard VLN Evaluation Results

Performance

Agent Task Method GFLOPs
TL OSR SR SPL
R B 1153 7429 6616 6149 - 476324
Ours (All) 12.87 7195 6041 5450 - 1917.61
Base 2056 - 5543 5234 - 818155
R2R-Back) ' C(Al) 2053 - 4921 4647 - 3331.80
HAMT
Base 1228 5424 4785 4227 - 4982.68
RIR-Last (Al 1236 4972 4193 3697 - 258944
Base - - - - 4.88 11022.03
CVDN Gusam - - - . 445 477334
wr B 1394 8110 7173 6057 - 4998.00
Ours (All) 1421 73.86 6347 5235 - 202630
DUET soon Base 3587 5038 36.19 22.67 9997.81+C'
Ours (All) 4236 5422 3643 20.37 4533.83+C

Table 9. Performance and efficiency of the baseline agents ver-
sus our improved-efficiency agents across multiple benchmarks.
We denote the cost of object feature extraction as C'.

Table 9 complements our main evaluation of standard
VLN in Sec 4.1 with additional benchmarks: R2R [1], R2R-
Back [10], R2R-Last [10], CVDN [53], and SOON [66].
For CVDN, we report the additional evaluation metric Goal
Progress (GP), which assigns a higher score as the agent
moves closer to the goal, indicating better performance [10].

The upper section of the table compares the performance
and efficiency of the baseline and our efficient HAMT agents.
For R2R and R2R-Back, our strategy reduces computations
by 60% with an SR drop of 9-11%. For R2R-Last, we
reduce computation by 48%, with a 12% reduction in SR. Fi-
nally, for the CVDN evaluation, our efficient model reduces
computation by 57%, with only a 9% decrease in GP.

The lower section of the table presents a comparison of
the performance and efficiencies of the DUET agents. For
R2R, our strategy achieves a 59% speed-up with a 12%
decrease in SR. For SOON, we observed a marginal in-
crease in SR accompanied by a 10% drop in SPL, while
saving 5463.98 GFLOPs (a 55% reduction in visual feature
processing). These results demonstrate that our efficiency
strategies are applicable across different benchmarks, achiev-
ing substantial computational savings while maintaining an
acceptable trade-off in performance.

Robustness to navigation length. It is possible that the
errors introduced by our method propagate, resulting in

Agent Task Average Path Length ANE(]) AGFLOPs(])
R2R 6.0 +0.53 -2845.63
HAMT R2R-Last 6.0 +0.45 -2393.24
R2R-Back 12.0 +0.54 -5463.98
R2R 6.0 +0.68 -2971.70
DUET SOON 9.6 -0.44 -5463.98

Table 10. Performance of our efficient HAMT agent on bench-
marks with different path lengths. ANE and AGFLOPs are
the changes in navigation error (NE) and GFLOPs compared to
the baseline agent. The path length is the minimum number of
navigation actions needed to reach the target destination.

worse agent navigation for longer trajectories. We study if
this is the case by considering the navigation error (NE)—
the distance of an agent’s final position to the target position
(in meters)—on benchmarks with varying path lengths. We
deploy all of our proposed methods (simultaneously) on the
HAMT agent and report the changes in NE and GFLOPs
compared to the baseline in Table 10.

We find our method is largely robust to longer path
lengths. The NE does not increase for longer trajectories,
and we even see a decrease for the SOON benchmark, which
has an average path length 3.6 more steps than R2R. The
results also show that our efficient VLN agent sees roughly
proportional computational savings for longer paths. For
example, the average path length in R2R-Back is double
R2R, and we achieve a 1.92x larger reduction in GFLOPs
for the HAMT agent.

Task Agent Method Wall-time (s)

B
R2R

Base 268962

DUET Ours 170464

Table 11. Wall-time comparison between the baseline agent and
our efficient agent on the R2R task.

Runtime comparison. To validate that our approach im-
proves efficiency in the real world, we report the wall-time
comparison between our efficient VLN model and the base-
line VLN for both HAMT and DUET agents, tested on the
R2R validation unseen split, in Table 11. Evidently, our
efficient strategy applied to the VLN agents results in signif-
icant runtime savings, with an approximate 40% reduction.
It is important to note that the disparity between the 60%
GFLOPs savings and the 40% runtime reduction can be at-
tributed to various hardware and software-related factors,
such as simulation overhead, memory bandwidth limitations,
or cache latency.

Method TL(]) OSR(?) SR(1) SPL(f) GFLOPs(|)
None (Base) 11.53 74.29 66.16 61.49 4763.24
k-extension 12.52 71.86 61.30 55.79 2,408.99
thresholds 12.33 72.46 62.62 57.39 3,867.46
LSH 11.53 74.20 66.11 61.47 3,894.76
k-extension+LSH 12.52 71.90 61.17 55.63 2,013.48
k-extension+thresholds 12.89 71.95 60.41 54.57 2,294.23
thresholds+LSH 12.33 72.41 62.49 57.33 3,190.66
All 12.87 71.95 60.41 54.50 1,917.61

Table 12. Performance of all combinations of our speed-up
techniques (k-extensions, early-exiting, and LSH) with the HAMT
agent on the R2R benchmark.

E. Per-Mechanism Analysis

In most experiments, we treat our proposed mechanisms as
a single unit by applying all three simultaneously. While
this is the most flexible and offers the best trade-off between
performance and efficiency, analyzing each mechanism in-
dependently can provide valuable insights into its concise
impact. Here, we present results on a per-mechanism basis.
Effectiveness. In Sec 4.1, we apply our k-extension tech-
nique and then add adaptive thresholding early-exiting (de-
noted thresholds in Table 3) and locality-sensitive hashing
(LSH) as we found those combinations of techniques offer
the most computational savings. Here, we study all combi-
nations of three efficiency mechanisms. To use early-exiting
and LSH without k-extension, we treat every non-navigable
view as one that can be early-exited or hashed. Navigable
views are still fully processed. We report results for the
HAMT agent on the R2R benchmark in Table 12.

The results show that between individual techniques, k-
extension offers the best computational savings with a 49%
reduction compared to the baseline agent. Early-exiting and
LSH only reduce GFLOPs by ~18% because early-exiting
still requires processing every view, and LSH reuses only a
minority of cached image embeddings. We find that LSH
provides better performance than the other two individual
mechanisms, with an SR only 0.05 lower than the baseline.
This is likely because the cached embeddings reused by
LSH are near-identical, having a negligible impact on perfor-
mance when interchanged. However, it is far less efficient
than when combined with our other techniques.

The combination we do not present in Table 3, early-
exiting and LSH (thresholds+LSH), provides slightly better
performance than combinations using k-extension but at the
cost of 39-66% more GFLOPs. This suggests that retaining
and partially processing/reusing the non-navigable views
mitigates performance drop but is not nearly as efficient as
k-extension. Overall, we find that all combinations of our
techniques fare well, offering different trade-offs between
performance and efficiency.

Robustness to natural corruptions. Now, we complement

Sec 4.4 and study the robustness of each of our proposed
mechanisms to visual corruption. We select the Low Light-
ing and Motion Blur corruptions based on their varying
impact on performance and being more likely to occur in
real-world VLN systems. We apply our methods to the
HAMT agent and report results on R2R in Table 13.

Our methods appear more robust to Low Lighting than
Motion Blur, which corroborates our findings in Sec 4.4.
Across both corruptions, k-extension and early-exiting see a
slight increase of 150-200 GFLOPs compared to the results
in Table 12. This can likely be attributed to the increased
trajectory length, and for early-exiting, we also find that the
OOD samples require more ViT layers before sufficiently
saturating. Both mechanisms result in significant drops in
performance, though less than when we apply all simulta-
neously (results shown in Table 8). Early-exiting is slightly
more robust, achieving a 2-7% higher SR, which makes
sense as it processes strictly more images than k-extension.

Interestingly, LSH functions extremely well when Low
Lighting is applied. It offers a ~49% reduction in GFLOPs,
compared to just 18% when no corruption is present. We
hypothesize that the reduced lighting makes more images
similar, causing our algorithm to find more matches and
reuse more embeddings. It also offers significant robustness,
only incurring a 1% point drop in SR. It seems like our
caching mechanism is better suited for this environment, a
finding we hope to explore in future work. For Motion Blur,
LSH is less successful, being more robust than our other
mechanisms but with minimal computational savings.

Corruption Method TL(]) OSR(1) SR(f) SPL(t) GFLOPs(|)
None (Base) 12.15 71.31 62.58 57.23 4903.06
Low Lighting k-extension 13.86 71.14 57.34 50.78 2571.06
thresholds 13.63 7029 5879 52.16 4099.21
LSH 12.95 71.43 61.47 55.19 2444.05
None (Base) 12.41 6820 59.13 54.01 4996.64
Motion Blur k-extension 14.03 65.13 53.77 48.01 2588.06
thresholds 13.81 68.20 57.51 51.05 4073.04
LSH 12.39 68.03 59.30 54.04 4030.52

Table 13. Performance under visual corruption of our methods
applied independently to the HAMT agent on the R2R benchmark.

F. Information Loss Analysis

In this section, we explore what types of information are lost
when applying each of our speed-up techniques.

Multi-exiting with thresholds. To assess the effect of pro-
cessing views through fewer ViT layers, we analyze attention
visualizations. Figure 8 illustrates attention maps from our
efficient HAMT agent on a representative view. In this ex-
ample, the correct action is to ignore the bathroom and move
to the side. As the exit layer decreases, HAMT focuses more
on the bathroom, indicating a slight degradation in visual

View 1.0 0.997 0.985

Figure 8. Attention visualization across different exit thresholds
on HAMT. Lower thresholds use fewer ViT layers.

High

Low

—e— Visual
Language
804 —A— History

L2 Distance
[}
o

IN
o
!

201

Figure 9. L2 distance of cross-modal embeddings from the base-
line and our efficient HAMT agent for different £ values. Embed-
dings are computed on 100 navigation instructions from R2R.

understanding. However, this change is minimal, and the
overall navigation outcome is unaffected. Therefore, our
adaptive thresholding technique provides an effective trade-
off between computational efficiency and visual fidelity.
k-extensions. For k-extensions, we fully mask non-
navigable views, making local attention visualizations unin-
formative. To capture the global impact of this masking, we
measure the change in embeddings after processing through
the cross-modal transformer. Specifically, we extract visual,
language, and history embeddings from 100 navigation steps
of HAMT on R2R. We then apply the k-extensions tech-
nique, re-extract the embeddings, and compute the mean
L2 distance for each navigation step. To ensure comparabil-
ity, we only consider the first step in each environment, as
subsequent steps may diverge.

Figure 9 shows the results across different values of k. As
k increases (i.e., more views are processed), the L2 distance
for all embedding types decreases significantly. Interestingly,
while £ = 4-6 only marginally reduces these distances, we
still observe strong performance in Sec. 4.1. This suggests
that much of the information captured by these embeddings
is not critical for navigation—an insight we leverage for
computational efficiency. Masking views affects visual em-
beddings the most, as they consistently have the highest
L2 distance for all values of k. However, we observe that

0.75 0.88 0.96
Figure 10. Cosine similarity of different views from R2R. Com-
parisons are made between the upper and lower images.

language embeddings, which encode the navigation instruc-
tions, are also notably impacted. This further explains the
performance degradation: if the agent does not understand
the instruction, it may fail to navigate or stop appropriately.
In contrast, history embeddings are more resilient, likely
because we only evaluate the first navigation step where
historical context is minimal. Overall, these results indicate
that masking views leads to information loss that extends
beyond visual perception. However, this loss is not critical
for effective navigation with the appropriate choice of k.
LSH. Finally, for LSH, we analyze what types of semantic in-
formation are lost when replacing embeddings by comparing
images with different cosine similarities. Figure 10 shows
three representative examples. When the cosine similarity
is low (<0.85), the views typically depict entirely different
scenes or locations (e.g., the left pair of views). Reusing
the corresponding embeddings in this case would result in a
complete loss of information, substantially degrading agent
performance. In contrast, when the cosine similarity is above
0.85—the threshold used in Sec 4.1—the views are generally
much more semantically similar. For instance, the middle
pair of views both show a wall of similar color, while the
right pair depicts a slightly shifted angle of the same handrail.
The embeddings of such images likely encode similar infor-
mation with minimal loss, which explains the limited impact
of our LSH technique on performance.

G. Similarity Metrics Comparison

Other than the three similarity metrics we use in Sec 4.3,
we test three additional metrics for comparison: SURF [5],
SIFT [41], and ORB [48]. These are feature detection and
description algorithms designed to identify and match key-
points in images. The similarity scores are computed by
dividing the number of matching keypoints by the minimum
number of keypoints detected in the two images. We test all
six algorithms on two sets of scenes, reflecting shifts caused

Table 14. Two sets of example views (A and B) demonstrating non-
identical but similar views that have been slightly shifted during
navigation.

Simiarlity Metrics Set A SetB
SSIM [57] 024 032
FSIM [63] 026 0.27
LPIPS [65] 0.55 0.62
SUREF [5] 0.31 0.32
SIFT [41] 045 037
ORB [48] 0.07 0.19

Table 15. Similarity scores measured on Set A and B. We test 6
different similarity metrics.

by an agent’s changing perspectives during navigation.

Figure 14 illustrates the two scenes, and Table 15 summa-
rizes the quantitative comparison. Among the three metrics
we employ for our main evaluation, LPIPS demonstrates a
higher similarity measure of approximately 60% for both
sets. In contrast, SSIM and FSIM are less effective at cap-
turing the similarity between views in Sets A and B. The
three additional metrics (SURF, SIFT, and ORB) are also
ineffective in providing reliable similarity scores for both
image sets A and B. Our qualitative comparison of different
similarity metrics applied to sets of similar scenes highlights
the challenges in accurately identifying true visual similarity.
We believe that an accurate measure of scene similarity is
crucial for further reducing the computational demands of a
VLN agent, and we leave this for future work.

H. Performance-Efficiency Trade-off Analysis

In order to illustrate our tunable performance-efficiency
trade-off, we show that even when limiting the performance
drop to under 5%, our input adaptive inference method ap-

2,750

2,650 | .

2,550 - 5

GFLOPs

2,450 |- .

2,350 - 5

62.5 63 63.5 64 64.5
SR

Figure 11. Trade-off between Performance (SR) and GFLOPs.

plied to the HAMT agent achieves significant computational
savings. For reference, the baseline HAMT model achieves
a SR of 66.16 with a computational cost of 4763.24 GFLOPs.
Figure 11 shows that with a 3-5% drop in SR, we still man-
age to achieve 43-50% savings in GFLOPs. These results
were tested on the R2R validation unseen dataset.

I. Related Work on Model Compression

Research has proposed an orthogonal approach to reduce
the computational demands and memory footprint of deep-
learning models: model compression. Quantization and prun-
ing are the leading practice in model compression. Quan-
tization [4, 6, 12, 13, 32, 38, 40, 44, 54] transforms the
memory representation of model parameters from 32-bit
floating point numbers to a lower-bit integers (e.g., 4-bit inte-
gers), thereby making it more storage efficient and lowering
memory usage. Pruning [17, 18, 23, 24, 28, 42, 45] aims to
create sparse models by removing parameters that are less
important for maintaining performance, effectively reducing
model size and computation.

While quantization and pruning have been demonstrated
in simpler unimodal encoder settings for image and text, they
are much more challenging in vision-language model(VLM)
settings [50, 55] and largely unexplored in VLN. [55] high-
lighted the challenges of pruning VLMs due to the unequal
weighting of visual and linguistic modalities. They mitigated
this by using a modal-adaptive approach, adjusting pruning
ratios across different model components based on down-
stream task sensitivity. Similarly, [50] demonstrated that
naively applying post-training quantization to CLIP caused
significant performance degradation, which they addressed
by introducing prompt tuning and alignment modules.

We expect similar challenges to be exhibited by VLN
agents, if not exacerbated. VLN models, in addition to pro-
cessing language and visual modalities, involve sequential
decision-making dependent on actions taken at each time

step. We anticipate the complex interactions between these
information sources to require careful consideration while
adapting model compression techniques. Future research
on such techniques can be superposed along with our input-
adaptive inference method to develop highly efficient models
with an acceptable performance trade-off.

J. Generalizability to Other EAI Settings

Here, we discuss the applicability of our proposed techniques
to additional embodied Al (EAI) settings.

Physical-world deployment. The ultimate goal of VLN re-
search is the effective and efficient deployment of agents in
the physical world. We believe our computational efficiency
generalizes to real-world deployment, as physical embodied
agents typically comprise building a harness around agents
trained in discrete environments [2, 59]. Several challenges
in this process include waypoint prediction, building naviga-
tion graphs, the visual domain gap, and latency. We address
these in our work. We study the first two in our continuous
environment experiment (Sec 4.2) and the visual domain gap
with natural visual degradations in Sec 4.4. Our work of-
fers a direct mechanism to address latency, which can lower
barriers to practical real-world deployment.

General embodied settings. While our approach is de-
signed for panoramic observations, it generalizes to other
EATI settings. Panoramas are extensively used in non-VLN
tasks, e.g., visual navigation [60], humanoid robots [64], and
autonomous driving [68]. We expect high transferability to
any setting employing panoramas. Generally, panoramic ob-
servations provide a wider scene context that can be valuable
for decision making, albeit at the cost of computations. Our
method alleviates this limitation and can facilitate wider use
of panoramas for embodied Al.

