
Is CLIP ideal? No. Can we fix it? Yes!

–Supplementary Material–

A. Extended Related Work 12

B. Experimental Details 13

B.1. Implementation Details . . . . . . . . . . . . 13

B.2. Datasets . . . . . . . . . . . . . . . . . . . . 13

B.3. Pseudocode . . . . . . . . . . . . . . . . . . 14

C. Ablation Studies 14

C.1. Impact of DCSMs . . . . . . . . . . . . . . 14

C.2. Classification Performance . . . . . . . . . . 15

C.3. Scaling Analysis . . . . . . . . . . . . . . . 15

D. Empirical Observations of CLIP shortcomings 15

E. Definitions and Proofs 15

E.1. Definitions Addendum . . . . . . . . . . . . 15

E.2. Conditions Addendum . . . . . . . . . . . . 16

E.3. Visualization of proofs . . . . . . . . . . . . 16

E.4. Lemma 2. Addendum . . . . . . . . . . . . 16

E.5. Contradiction for Condition 1 and 3 . . . . . 17

E.6. Contradiction for Condition 1 and 4 . . . . . 18

F. Open Vocabulary Experimental Details 19

F.1. LLM System Prompts . . . . . . . . . . . . 20

A. Extended Related Work

Vision Language Models. Recent advancements in VLMs

have significantly bridged the gap between vision and lan-

guage. A seminal work in this area is CLIP [49], which

demonstrated that large-scale contrastive learning can ef-

fectively align image and text representations into a shared

embedding space. Building upon its core principles of large-

scale contrastive pretraining and joint representation learn-

ing, several subsequent works have explored alternative ar-

chitectures and training paradigms, including ALIGN [17],

FILIP [67], SLIP [38], ALBEF [25], and CoCa [68], to name

a few. Autoregressive VLMs [33, 34] have emerged as com-

pelling alternatives to CLIP by jointly attending to both text

and image embeddings. Neurosymbolic program synthesis

methods like ViperGPT [57], VisProg [15], and VADAR

[36] also mitigate some of CLIP’s limitations by formulat-

ing the text-image semantic distance acquisition as several

subproblems. While these methods are more comprehensive

than CLIP and can specialize in complex visual reasoning,

they are orders of magnitude more expensive to infer and do

not offer the same simplicity or gradient retention as CLIP,

limiting their downstream applicability. In fact, most of

these models rely on a CLIP-like model’s latent space as a

submodule. As such there remains a strong motivation to

continue refining and extending CLIP-like architectures by

addressing their inherent shortcomings.

Note that at a very coarse level, DCSMs are analogous

to the QKT matrix computed between the text token em-

beddings and image patch embeddings during the attention

loop in autoregressive VLMs. However, QKT matrices are

dynamically computed during attention using learned pro-

jections, while DCSMs are static post-encoder similarity

measures. These VLMs are also trained on large data cor-

puses for use cases beyond simple text to image distance

matching. Often, while the initial image encoder remains

frozen, the training pipeline includes learning the optimal

initial projection for text token embeddings in addition to

the downstream LLM decoder. In this work, we pursue the

more narrow aim of maximizing the potential for CLIP to

produce correct semantic image-text scores while keeping

both text and image embeddings frozen.

Empirical Limitations of CLIP. A growing body of work

has revealed several limitations of CLIP in handling com-

plex visual-text interactions. One major issue is its difficulty

in distinguishing between different attribute-concept bind-

ings in multi-object scenes [8, 23, 39]. For example, the

text prompt “A purple sphere" will have very high cosine

similarity with an image that contains a purple cube and a

yellow sphere, despite the yellow attribute not belonging

to the spherical object. Lewis et al. propose CLEVR-bind

as a simple benchmark which isolates the attribute binding

capability of VLMs. More comprehensive natural-language

benchmarks targeting attribute binding include Attribute, Re-

lation, and Order (ARO), Sugarcrepe [16], VL-checklist [75],

and Multimodal Visual Patterns (MMVP) [58]. Additional

studies have noted that CLIP’s text embeddings often behave

like “bag-of-words" in practice, leading to imsinterpretations

of object layouts or conflates multiple entities within a single

scene [23, 39, 69]. Yuksekgonul et. al specifically propose

WhatsUP as a benchmark which isolates spatial reasoning

capacities of VLMs. In addition, the suite of compositional

understanding benchmarks (ARO, VL-checklist, Sugarcrepe,

MMVP) also include captions that require spatial reasoning.

Another notable failure mode is CLIP’s inability to accu-

rately represent negation [1, 55]. In response, Alhamoud et

al. develop NegBench to specifically assess how well VLMs

handle various forms of negatory sentences. The aforemen-

tioned compositional benchmarks further challenge models

with captions that require proper negation understanding.

Some other criticisms of CLIP are its inability to general-

ize to different reference frames [74] or to count [42]. While

these issues represent additional challenges for CLIP, they

are beyond the scope of our current work.

Proposed Solutions to CLIP Limitations. The most promi-

nent method of corrections have been to change the training

data distribution, such as retraining or fine-tuning CLIP with

hard negative or positive examples [1, 21, 42, 48, 55, 62, 69]
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or increasing the training data for more comprehensive and

longer captions [30, 63]. However, simply scaling the train-

ing data to mitigate specific problems will often lead to

reduced generalization [16, 35, 71].

Some engineering solutions include using object detectors

to segment images into smaller ROIs [27], adding attribu-

tion tracing for correct text-image pairs during training [28],

patch clustering for semantic segmentation [53], using chain

of thought spatial reasoning [9] or altering the self attention

mechanism in the vision encoder [61]. Simpler solutions

may be querying CLIP with multiple descriptions [37]. All

of these methods require retraining CLIP from scratch, or

typically adding a heavy-handed component to single out

the objects in a scene.

B. Experimental Details

B.1. Implementation Details

By convention the rows of the dense map correspond to one

text token embedding, and the columns to one image patch.

Every text and image pair creates a DCSM of shape (30,197),

where 30 is the maximum number of text tokens and 197 is

the number of 16x16 image patches in an image of shape

224x224. Text prompts shorter than 30 tokens are padded

with EOS tokens. FRs are therefore of the shape (num-

image-patches, 1). For example, for the sentence “An image

of a circle above a triangle", the word above is a functional

word and the corresponding row in the DCSM gets replaced

with the respective FR in the lookup table. For synonymous

functional words, we use a single FR. (Somewhat unusually,

we consider “front","below", and “behind","above" to be

synonymous, as DCSMs use a 2D fixed frame of reference

due to the topology being represented by the patch index.)

The DCSMs are z-score normalized for stable training.

For all training and experiments, we use a lightweight

CNN with 2 convolutional layers and a hidden dimension

of 128. In addition to a 20-fold reduction in parameters, we

train our network with a batch size of 8, a 4000-fold decrease

from the original mini-batch size of 32,768. In fact, the sum

of all our training data per model is smaller than this number.

Our model outputs a single score for each image and text

pair DCSM. During training, we use a contrastive cross-

entropy loss as with the original CLIP [50]. We train with

the Adam optimizer with learning rate initialized at 1e−3.

One model is trained with a curated synthetic dataset and

another with COCO 2017 training split. Dataset curation is

detailed below.

B.2. Datasets

We train our pipeline on two different datasets - one synthetic

dataset composed of open-source 3D assets from Objaverse

[12] placed upon randomized backgrounds, and another gen-

erated from COCO-train-2017 [32].

We are mainly interested in labeling images with text

prompts that lie in the Condition 2,3,4 category. That is,

for both the synthetic case and the COCO-train case, we

generate a dataset for attribute binding, spatial relationship-

s/localization, and negation. Samples from each dataset are

shown in Fig. 6.

Attribute Binding Dataset Every image in this dataset

includes two distinct objects of unique colors or sizes. For

each image, we generate a “hard negative". So if there

is an image with a “red cow and purple ghost", we also

generate an image with “red ghost and purple cow". This

means that every sample has a positive and negative image,

and two positive and negative captions each. The positive

image contains object A with attribute Aatt , and object B with

attribute Batt . The negative image contains the same objects

but with swapped attributes. The positive caption options

are: (P1) “Aatt A and Batt B” and (P2) “Batt B and Aatt A”.

The negative caption options are: (N1) “Aatt B and Batt A”

and (N2) “Batt A and Aatt B”. We generate 5,402 images

for this dataset, which makes 2701 samples with associated

opposites.

For the COCO-train set, we use a natural language pro-

cessing library to extract adjective-noun pairs in the natural

language captions, and select images that have at least two

distinct objects A,B with distinct attributes Aatt ,Batt . Cap-

tions follow the same format as above. We select 8,547

images from COCO-train towards this dataset.

Spatial Relationships and Localization Similarly as

above, we generate synthetic images where one object is

placed either above, below, to the left, or to the right of,

another object with random jitter. For every positive image

where A is rel to B, there is a negative image where A is

relopp to A. Here, (above, below) are opposite relation pairs,

as are (left of, right of). The positive caption options are:

(P1) “A rel B” and (P2) “B relopp A”. The negative caption

options are: (N1) “A relopp B” and (N2) “B rel A”. We

generate 11,324 images for this dataset, which makes 5662

samples with associated opposites.

For the COCO images, we choose images where at least

two distinct objects are present, and use the relationship

between their bounding boxes to validate that they satisfy

the definition of one of the spatial relationships being con-

sidered. Note that, as we are using patch location on the

image to preserve topology, we use a fixed frame of refer-

ence to determine the meaning of “above", “below", “left",

and “right". To make a negative version of the image, we use

the CutMix technique [70] to swap the image content in the

two bounding boxes. With the positive images from COCO-

train and generated hard negatives, there are 11,502 images

in this dataset, which makes 5751 samples with associated

opposites.

Negaton Generating negatory captions is tricky. With

contrastive training, an entirely negatory caption (e.g., “An
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Figure 6. Overview of Dataset Curation. Each box is a dataset.

The left image is a positive pair with the top two captions, and

the right image is a positive pair with the bottom two captions.

The COCO-train Attribute set does not have a hard negative image

counterpart.

image without a turtle") necessitates that all other images

in the batch be a positive sample (e.g., they must now all

contain a turtle).

As such, for the first pass for the models trained with

synthetic data, we generate images with two random objects

A1 and A2, and choose as its hard negative another image

which contains two non-overlapping objects, B1 and B2. For

the negatory term ¬, we choose between [’but not’, ’and no’,

’without’]. The positive caption options are: (P1) “A1¬B1”

and (P2) “A2¬B2”. The negative caption options are: (N1)

“B1¬A1” and (N2) “B2¬A2”. We generate 10,000 images

for this dataset.

For COCO-train we select two images that have two dis-

tinct object labels, and generate captions the same way. We

select 10,000 images toward this dataset.

B.3. Pseudocode

Below we illustrate the process for extracting DCSMs.

C. Ablation Studies

C.1. Impact of DCSMs

Model WhatsUP COCO2ob j

Ours - DCSM (CNN) 62.6 70.9

Ours - DCSM (CNN)w/oFR 48.6 55.5

Ours - DCSM (ViT) 29.4 47.0

CLIP - ViTB/16 30.5 45.9

CLIP - ViTB/16f.t. synth 25.5 49.1

CLIP - ViTB/16MLP scorer 25.4 53.6

Table 4. The DCSM networks were trained with synthetic data.

1 dense_image_features = image_encoder (I).

last_hidden_state . unsqueeze (1)

2 # Shape : ( batch_size , 1, iseq , embed_dim )

3

4 dense_text_features = text_encoder (T).

last_hidden_state . unsqueeze (0)

5 # Shape : (1, batch_size , tseq , embed_dim )

6

7 dcsm = einsum ( "bqie , lpte -> bpit",

dense_image_features , dense_text_features

)

8 # Shape : ( batch_size , batch_size , iseq , tseq)

9

10 dcsm = add_functional_rows (dcsm , lookup_list )

11

12 out = lightweight_cnn (dcsm)

13 # Shape : batch_size , batch_size

14

15 labels = eye(out. shape [0])

16 # Shape : batch_size , batch_size

17

18 loss = CE(out , labels ) + CE(out.t() , labels .t

())

Figure 7. Pytorch-like code for training our model with DCSMs

In Sec 5. we said that it follows from our analysis that

neither a fine-tuned/reprojected CLIP embedding space, nor

a learned scoring module, could alone be the fix to CLIP’s

fundamental shortcomings. To verify this conclusion, we

perform a series of ablations. First, we finetune OpenAI’s

CLIP (ViTB/16) with the same synthetic dataset used for

our model training. We also train a MLP scoring module

which takes concatenated text and image embeddings as

input to output a score, again on the same synthetic dataset.

Both attempts fail to improve performance on WhatsUP and

COCO-spatial, resulting in accuracies near chance (25% and

50%, respectively).

Further, we alter our training pipeline in two different

ways to assess the need for a CNN as well as the FRs. Re-

moval of the FRs decreases performance overall, but the

increased information capacity from using the DCSMs and

the downstream network still allows the model to perform

above fine-tuned CLIP models. Replacement of the CNN

with a comparably small ViT, with a patch size of 2 and 2

layers of 4 attention heads, resulted in another near-chance

performance on the datasets. The ViT appears more prone to

overfitting to the training set, as it does not have the imposed

constraint of pattern-recognizing kernels as in CNNs.

All networks were trained with learning rate 1e-3 with

Adam for 27 epochs. Under minimal compute, the CNN

generalized much better. Fine-tuning CLIP projection layers

with the same dataset for the same number of epochs did not

result in any noticeable performance increase.
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C.2. Classification Performance

A known problem with VLMs using CLIP embeddings is

the decline in classification capacity [73]. We evaluate our

model on two classification datasets and find that, despite

being trained with simple prompts and no image classifica-

tion captions, the reduction in classification performance is

minimal compared to those observed in BLIP or LLaVA.

Model Caltech101 Flowers102

CLIP-ViT B/16 [49] 82.6 67.7

Ours - DCSM + synth 77.8 52.9

Ours - DCSM + coco 79.2 43.7

BLIP2-2.7B [26] 22.3 14.2

IBLIP-7B [11] 58.4 26.8

LLaVA1.5-7B [34] 62.1 10.2

Table 5. Classification Accuracy of VLMs. Top three scores per

dataset are bolded.

C.3. Scaling Analysis

In this work, we showcase a very small and computationally

light network and training pipeline for the DCSM method.

To verify that this method will scale with increasing data, we

perform a scaling analysis. Fig. 8 shows the results. The x

axis is the approximate number of samples from the curated

COCO2017 training set. From this we see that our training

pipeline is likely to scale with increasing the dataset.

Figure 8. Result of linearly scaling training data. x values are

approximate dataset sizes.

D. Empirical Observations of CLIP shortcom-

ings

In Fig. 9 we show the empirical effects of the superposition

derived in Lemma 1. In summary, the figure serves to show

how an image with an increasingly greater number of objects

present embeds increasingly farther from the text label for

any one of those objects in the CLIP latent space. The degree

of this effect is such that beyond 6-8 objects in one image,

CLIP embeddings of random noise images are similarly

close to those object text labels.

Figure 9. For each image in COCO-validation, we identify k objects

with labels. Then we take the cosine similarity between all k labels

and the image. The orange line shows the average cosine similarity

for images with k objects and all labels that appear in the image.

The blue dotted line shows the cosine similarity for a label which

combines all k labels and the image being considered, averaged

for each k. The green plot shows the average cosine similarity

score between 5 random noise images and the labels of all COCO-

validation images. The error bands indicate the 25th and 75th

quartile.

E. Definitions and Proofs

E.1. Definitions Addendum

Definition 1. For x = the concept of a bird, its mapping in

I is an image of a bird, and its mapping in T is “bird". For

all concepts x in V, there is an equivalence class in I and

T that unambiguously represent that concept, respectively.

We narrow the scope of all images to 1 representative image

per concept. So for the object concept of a “bird", there is

one image which is equivalent. Similarly, for each concept x

there is only 1 corresponding d ∈ T.

We also choose M object concept elements toward the

subset V. In the manner of large ontologies (such as Im-

ageNet1000), we take it to be true that there exist at least

M ≤1000 object classes which are mutually exclusive. This

means that for any representative image in the set of M, an

expert human reviewer would be able to assign it to that

unique object class. These object classes must be subordi-

nate categories on any hierarchical directed tree of visual

concepts. (An example concept hierarchy: car and bus are
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lower-level concepts that are below vehicle.) This ensures

no two concepts in V overlap in semantics.

E.2. Conditions Addendum

Condition 1. Semantic separability means: if human anno-

tators would agree that a text caption appropriately describes

an image, the embeddings for that caption and image should

have high cosine similarity. Conversely, the score should be

low if an annotator deems the caption to be inappropriately

matched to the image.

Notably, this condition does not require correct hierarchi-

cal organization among concepts or semantically accurate

placement of synonymous phrases. In reality there exist

more than N distinct concept categories and each category

may have synonymous text representations and multiple in-

stances and viewpoints of the representative visual object.

Our goal is to set up extremely minimal geometric require-

ments for C to evaluate whether they are possible to attain.

This condition must be satisfied for C to perform zero-

shot image classification, retrieval, and semantic similarity

search. Example benchmarks that pose this challenge in-

clude Imagenet, COCO, LAION, and many more.

Condition 2. This condition must be satisfied for C to

perform tasks where the model must identify attributes as-

sociated with different objects in a scene. This could be

towards scene understanding, vision question answering, or

accurate image retrieval. Specific datasets include CLEVR-

bind, NCDataset-grayscale, VL-checklist, Sugarcrepe, ARO,

and MMVP.

Condition 3. This condition must be satisfied for C to to

perform tasks that require compositional image understand-

ing. This could be for image captioning, text-guided image

generation, spatial navigation, and more. Specific datasets

include WhatsUP, Coco-spatial, MMVP, etc.

Condition 4. This condition must be satisfied for C to

perform well on vision-language tasks that include prompts

with negations. Note that this condition is a very relaxed in-

terpretation of negation: Strictly semantically speaking,“not

X" is a correct semantic pair with any image that does not

have X, requiring a cosine similarity near 1. But the defini-

tion of the negation condition we impose does not require

such granularity. Again, we seek to pose minimal constraints

to identify whether there is some version of negation CLIP

could attain under ideal settings. Specific datasets that re-

quire negation understanding include NegBench, as well as

other compositional benchmarks like VLM-checklist, Sugar-

crepe, or MMVP.

E.3. Visualization of proofs

Fig. 10 illustrates the proofs visually.

E.4. Lemma 2. Addendum

Derivation of p. We define the perturbed vector:

i(xa) = (1−δ ) i(x)+ pt(a),∥i(xa)∥2 = 1 (10)

Expanding the norm, we have:

∥i(xa)∥2 = ∥(1−δ )i(x)+ pt(a)∥2

∥i(xa)∥2 = (1−δ )2∥i(x)∥2 + p2∥t(a)∥2

+2(1−δ )pi(x) · t(a)
(11)

Since i(x) and t(a) are unit vectors, this simplifies to:

∥i(xa)∥2 = (1−δ )2 + p2 +2(1−δ )pcosθ (12)

where cosθ = i(x) · t(a). For i(xa) to be a unit vector, we set

the right hand side to 1:

(1−δ )2 + p2 +2(1−δ )pcosθ = 1

−2δ +δ 2 + p2 +2(1−δ )pcosθ = 0
(13)

Notice that this is now a quadratic equation in p:

p2 +2(1−δ )pcosθ − (2δ −δ 2) = 0. (14)

Use the quadratic formula:

p =
−2(1−δ )cosθ±

√
[2(1−δ )cosθ ]2+4(2δ−δ 2)

2 (15)

We can simplify the above to find the correct value of p that

ensures i(xa) is a unit vector.

p =−(1−δ )cosθ ±
√

4(1−δ )2 cos2 θ +8δ −4δ 2

2
.

(16)

Analysis for noise vectors. In Lemma 2 we derived

i(xa,yb) =
(1−δ )(i(x)+ i(y))+ pt(a)+qt(b)

2

= i(xb,ya)
(17)

using i(xa) = (1−δ )i(x)+ pt(a).
Now we show that analytically, the inclusion of a noise

vector ε does not change the results. Specifically, we want

to simulate

i(xa) =
(1−δ )i(x)+δ t(a)+ ε

∥norm∥
for some randomly sampled ε and δ .

In Fig. 11 we showcase the results of sampling ε from a

standard normal distribution, with varying weights.

We observe the following relations remain consistent:

• As expected of randomly initialized vectors in high dimen-

sions: i(x) · t(a)≈ 0

• For some unrelated object-attribute pairs, their image

embeddings are roughly orthogonal as well: i(wc,zd) ·
i(xa,yb)≈ 0

• The strong conclusion from Lemma 2 is approximately

always true: i(xb,ya) · i(xa,yb)≈ 1

regardless of i(xa) ·t(a), i(x) · i(xa). As such, we see that even

if there is noise in the superpositions described in Lemma 1

and 2, C still cannot disambiguate between different pairings

of the same two attributes and two objects.
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Figure 10. Conceptual Overview of Contradictions
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Figure 11. Titles of each subplot indicate the weights of the

different components composing i(xa,yb), i(xb,ya). Obj= indi-

cates weight of the object concept embeddings i(x), i(y), Attr=

indicates weight of the attribute text embeddings t(a), t(b), and

Noise= indicates weight of the noise vector ε . In the legend, ob-

ject concepts and attribute embeddings are denoted in shorthand:

x = i(x),a = t(a), and so on.

E.5. Contradiction for Condition 1 and 3

Now we show Condition 3 cannot be met if Condition 1 is

met. Below we will show two impossibility cases and prove

them.

Lemma 3. C cannot accurately represent both the dis-

tance between spatial locations and relationships at the

same time.

Proof. We first derive i(x,g<rel>,y) for two antonymous

g<rel> to satisfy Condition 1.2. Then we consider an ex-

ample scenario with two objects, two spatial relationships,

and two localizing terms. We will find that for three sample

images, the cosine similarities between their embeddings

and four textual clauses will have to contradict Condition 3

for some pairs.

For two concepts x and y, their combined embedding

is Eq. (3). Now, if we want to express some composi-

tional relationship g<rel> ∈ G between x and y such that

i(x,g<rel>
1 ,y) ̸= i(x,g<rel>

2 ,y), we can write

i(x,g<rel>
1 ,y) = (1−δ ) i(x,y) + v1

i(x,g<rel>
2 ,y) = (1−δ ) i(x,y) + v2

(18)

where δ ≪ 1 and v1 ̸= v2. Similar to Lemma 2, v is

a small location-specific component, as i(x,g<rel>,y) must

remain close to i(x,y) per Condition 1.2.

Let g<rel>
L = gL be the relational concept whose equiva-

lent mapping in T is “_ left of _", and g<rel>
R = gR “_ right

of _". Then we can write:

i(x,gL,y) = (1−δ ) i(x,y)+ e⊥,L

i(x,gR,y) = (1−δ ) i(x,y)+ e⊥,R

where e⊥,L,e⊥,R both lie in the orthogonal error subspace

(of dimension N −1) and have fixed magnitude
√

2δ −δ 2

such that i(x,gL,y) is a unit vector. Notice that we cannot

use the intuition from Lemma 2 that v must be composed of

the textual component of gL - an image with a melon above

a bed does not intuitively need to embed closely with the

text embedding for “above".

Then to maximize the Euclidean distance ∥i(x,gL,y)−
i(x,gR,y)∥, we must choose e⊥,R = −e⊥,L. Since

(x,gL,y),(x,gR,y) ∈ S, they also have an equivalent item

in T.

Figure 12. Simple setup. Here the only relations that exist are “_

left _", “_ right of _", “_ to the left", and “_ to the right".

Now we formulate a proof by contradiction. Consider

three images and three text prompts, as shown in Fig. 12. In

addition to gL,gR, we also introduce g<loc>
l = gl ,g

<loc>
r =

gr, to represent “_ to the left" and “_ to the right" in T,
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respectively. These are the only four compositional concepts

we consider for simplicity, but conclusions will generalize.

We denote (1 − δ ) i(x,y) = e||, the three images as

i(imagek) = ik and t(text j) = t j, for k, j ∈ 1,2,3. ik =
e||+ e⊥,k where e|| is the shared parallel component for all

ik.

Consider some images iw,w > 3, where x,y do not have

gL,gR,gl or ,gr as a location or relationship. For example i4
could be an image of x on top of y in the center of the frame.

In this case,

ik · iw = (e||+ e⊥,k) · (e||+ e⊥,w) = |e|||,k ∈ (1,2,3)

as these image pairs share no compositional aspects in com-

mon. Since i1, i2 share the same localization for the ob-

jects present, satisfaction of Condition 3.2 requires that

i1 · i2 > |e|||. Similarly, as i1, i2 share the same relationship

between the objects present, satisfaction of Condition 3.3

requires that i1 · i3 > |e|||.
This could only happen if embeddings of images 1,2

and i,3 have perpendicular components that are partially

parallel. In other words, in order to satisfy Conditions 3.2

and 3.3, there must exist a C in which e⊥,1 · e⊥,2 > 0 and

e⊥,1 · e⊥,3 > 0.

For each image in Fig. 12, the embeddings must optimize

the following local similarities:

i1 = argmax
i1

(i1 · t1 + i1 · t2 + i1 · t3)

i2 = argmax
i2

(i2 · t1 + i2 · t2 + i2 ·−t3)

i3 = argmax
i3

(i3 ·−t1 + i3 ·−t2 + i3 · t3)

(19)

subject to ∥ik∥ = 1. This allows us to solve for e⊥,ks. For

k = 1:
e⊥,1 = argmax

e⊥,1

((e||+ e⊥,1) · t1 +((e||+ e⊥,1) · t2+

((e||+ e⊥,1) · t3)
(20)

subject to
∥

∥e⊥,1

∥

∥=
√

2δ −δ 2. e|| is fixed so this becomes:

e⊥,1 = argmax
e⊥,1

(e|| · (t1 + t2 + t3)+ e⊥,1 · (t1 + t2 + t3))

= (t1 + t2 + t3) ·
√

2δ −δ 2

(21)

Similarly, we get:

e⊥,2 = (t1 + t2 − t3) ·
√

2δ −δ 2

e⊥,3 = (−t1 − t2 + t3) ·
√

2δ −δ 2
(22)

Now taking the dot products, we have:

e⊥,1 · e⊥,2 = (|t1|+ |t2|− |t3|) ·2δ = 2δ

e⊥,1 · e⊥,3 = (−|t1|− |t2|+ |t3|) ·2δ =−2δ

e⊥,2 · e⊥,3 = (−|t1|− |t2|− |t3|) ·2δ =−6δ

(23)

Practically speaking, it is possible by adding more

representative samples in the training dataset to change

the weights of t js. That is, for some β1 + β2 + β3 = 3,

Eqs. (21,22) could be reformulated as:

e⊥,1 = (β1t1 +β2t2 +β3t3) ·
√

2δ −δ 2

e⊥,2 = (β1t1 +β2t2 −β3t3) ·
√

2δ −δ 2

e⊥,3 = (−β1t1 −β2t2 +β3t3) ·
√

2δ −δ 2

(24)

The dot products then become:

e⊥,1 · e⊥,2 = 2δ
(

β 2
1 +β 2

2 −β 2
3

)

e⊥,1 · e⊥,3 = 2δ
(

−β 2
1 − β 2 + β 2

3

)

e⊥,2 · e⊥,3 = −2δ (β 2
1 +β 2

2 +β 2
3 )

(25)

Note that regardless of the reweighting, e⊥,1 · e⊥,2 =
−e⊥,1 · e⊥,3. This directly negates our previous observation

that an ideal C must satisfy e⊥,1 ·e⊥,2 > 0 and e⊥,1 ·e⊥,3 > 0.

As such, there exists no C which sufficiently represents both

relational and objective space in the image embeddings.

Lemma 4. C cannot accurately represent compositional

concepts of different hierarchy.

Proof. Here we will show that general prepositions are erro-

neously closer to all unrelated prepositions.

Some prepositions are more general than others. For ex-

ample, g<rel>
B = gB where fG,T (gB) = "_ beside _" seman-

tically includes both gL and gR. The ideal placement for

t(x,gB,y) should locally optimize for the following similari-

ties:

t(x,gB,y) = argmax
t(x,gB,y)

[

t(x,gL,y) · t(x,gB,y)

+t(x,gR,y) · t(x,gB,y)

−
|G\{gL,gR,gB}|

∑
z=1

t(x,gz,y) · t(x,gB,y)
]

(26)

We know from Lemma 1 that this means t(x,gB,y) should be

a weighted superposition of t(x,gL,y) and t(x,gR,y). Since

we know eL =−eR, we can write:

t(x,gL,y) = (1−δ ) · t(x,y)+ eL

t(x,gR,y) = (1−δ ) · t(x,y)− eL

Then the superposition of the two becomes t(x,y). But

this is a semantically erroneous placement for t(x,gB,y),
as it will incorrectly be closer to any other instance of x

and y co-appearing in a scene than the average t(x,g<rel>,y).
For example, for g<rel>

A = gA where fG,T (gA) = "_ above _",

t(x,gB,y) · i(x,gA,y)> t(x,gL,y) · i(x,gA,y) even though the

two captions are equally inapplicable.

E.6. Contradiction for Condition 1 and 4

Now we show Condition 4 cannot be met if Condition 1 is

met. Before we move to the proof, we first discuss in greater

detail the possible arrangements of object concepts in C.
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Orthogonality. One straightforward intuition is that since C

is a high dimensional space, for any two random concepts

x1,x2 ∈ V, they should be approximately orthogonal [65]:

t(x j) · t(xk)≈ 0 ∀ j ̸= k (27)

This makes it trivial to derive that t(¬x) · t(y) ≈ t(x) ·
t(y) = 0, violating Condition 4.2. In order to be more rigor-

ous, we show that negation cannot be achieved even under

strong idealistic conditions, where t(x) are uniformly dis-

tributed and distinguishable from one another. This requires

perfect isotropy of M concepts.

Isotropy. Starting with |V| = M ≤ N concepts, we determine

the ideal distribution for t(x) ∀x ∈ V. As in Lemma 1, we

denote distinct concepts as: t(x1), t(x2), .... Since all x ∈
V are mutually exclusive in semantics by definition, the

distance between any two arbitrary concepts x1,x2 should

be comparable to the distance between x1,xk for some xk ∈
V\{x2}. Then C must minimize the variance among the

cosine similarities of all pairs of concepts:

min
t(x j)·t(xk)

M

∑
j=1

M

∑
k> j

(

t(x j) · t(xk)− s̄
)2

s. t. ∥t(xk)∥= 1, ∀xk ∈ V

(28)

where s̄ is the mean cosine similarity:

s̄ =
1

(

M
2

)

M

∑
j=1

M

∑
k> j

t(x j) · t(xk) (29)

Let t(x j) · t(xk) = s jk. Then the objective simplifies to:

min
s jk

M

∑
j=1

M

∑
k> j

(

s2
jk − s̄2

)

= min
s jk

M

∑
j=1

M

∑
k> j

(s jk)
2 − s̄2

(

M

2

)

(30)

Differentiate the first and second terms with respect to s jk:

∂

∂ s jk

M

∑
j=1

M

∑
k> j

s2
jk = 2s jk, (31)

∂

∂ s jk

(

s̄2

(

M

2

))

= 2

(

M

2

)

s̄
∂ s̄

∂ s jk

=
1
(

N
2

)2

(

M

2

)

s̄= 2s̄ (32)

This means that the optimum of Eq. (28) is reached when

2s̄−2s jk = 0 ∀ j,k ∈ (1,M), j ̸= k (33)

In other words, the cosine similarities between any two

object concepts must be the same as the average. That re-

quires for all t(xk) to be isotropically distributed in R
N . The

optimal arrangement of all t(xk) is then a M-1 dimensional

regular simplex, which is a structure of M equiangular unit

vectors in R
M . Then we have that the cosine similarity of

two random vectors in C is:

t(x j) · t(xk) =− 1
M−1 ∀ j ̸= k (34)

as all vector pairs in a regular simplex have angles

arccos(− 1
M−1 ) [47].

Lemma 5. Even under isotropic concept distribution, C

cannot accurately represent negation.

Proof. We first derive what t(x), t(¬x) must be to respect

Conditions 4.1 and 4.2. Then we see that this derivation

contradicts Condition 4.3.

For C to ideally represent negation, the following must

be true:
t("¬ x") · i(x)< t("¬ x") · i(v) (1)

t("¬ x") · i(v)> t("x") · i(v) (2)

t("x") · t("y")< t("¬x") · t("¬y") (3)

for all v ∈ V\{x}

(35)

To achieve Eq. (35.1), we solve for:

t(¬x) = argmax
t(¬x)

[
|V\{x}|
∑
v=1

t(¬x) · i(v)− t(¬x) · i(x)
]

= argmax
t(¬x)

[

t(¬x) ·
(

|V|
∑
v=1

i(v)− i(x)− i(x)
)]

(36)

Here, ∑
|V|
v=1 i(v) is the sum of all vectors in a regular sim-

plex, which is 0. As such, we find that:

t(¬x)∗ =−i(x) (37)

Recall that for two vectors in an M−1 dimensional sim-

plex, t(x j) · t(xk) =− 1
M−1 ∀ j ̸= k. With the above solution,

we now have that:

t(¬x j) · t(xk) =
1

M−1
> t(x j) · t(xk) (38)

which satisfies condition 4.2. But 4.3 fails due to the follow-

ing:

t(¬x j) · t(¬xk) = t(x j) · t(xk) =− 1

M−1

t(¬x j) · t(xk)> t(¬x j) · t(¬xk)

(39)

Let’s say x j = “chair" and xk = “penguin". The first erro-

neous semantic relationship that emerges is that the distance

between “chair" and “penguin", which are fully contradic-

tory statements, will be equivalent to the distance between

“Not chair" and “Not penguin". For the latter two prompts

there exist a lot of images that would be a true match for

both, whereas for the first prompt there exists only one.

The second erroneous conclusion is that the cosine simi-

larity between “Not chair" and “penguin" is greater than the

cosine similarity between “Not chair" and “Not penguin".

This is semantically incorrect for the same reason as above.

F. Open Vocabulary Experimental Details

We train two model types, one on 5k COCO images from

the training split for 12 epochs, and another on 10k COCO

images for 6 epochs. The images each have a hard positive

and negative, where the latter is the same as the former save

for two nouns being swapped. We choose this particular

type of intervention as CLIP-like VLM performance across

the board was lowest for this category of hard negatives in
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Original Prompts:

[’A baby elephant stands next to its mother.’, ’A desktop

computer sitting on top of a wooden desk.’, ’A mother

stands next to its baby elephant.’, ’A wooden computer

sitting on top of a desk.’]

Original Lookup Table:

[ ’above’, ’below’, ’many’, ’no’, ’small’, ’big’, ’not’,

’without’, ’left’, ’right’, ’absent’, ’but’, ’large’ ]

Simplified Prompts:

[ ’Baby elephant next to mother’, ’Desktop computer on

wooden desk’, ’Mother next to baby elephant’, ’Wooden

computer on desk’ ]

New Lookup Table:

[’above’, ’below’, ’many’, ’no’, ’small’, ’big’, ’not’,

’without’, ’left’, ’right’, ’absent’, ’but’, ’large’, ’near’,

’on’]

New Prompts:

[’Baby elephant ⟨NEAR⟩ mother’, ’Desktop computer

⟨ON⟩ wooden desk’, ’Mother ⟨NEAR⟩ baby elephant’,

’Wooden computer ⟨ON⟩ desk’]

Table 6. Examples of LLM-in-the-loop natural language simplifica-

tion and FR extraction.

Sugarcrepe [16]. We evaluate this paradigm on the swap-

object split of Sugarcrepe and the VG-spatial split of VL-

Checklist [75] against naive and finetuned CLIP. We choose

this particular split of VL-Checklist because we find that all

other splits (Objects, Attributes, or Relation-Action) do not

introduce new functional words and are thus not applicable

for testing dynamic FR updates.

All LLM queries were made to OpenAI’s gpt4o-mini

model, with a temperature of 0.7. At the time of evaluation,

this was the most affordable model on the API at: $ 0.150 /

1M input tokens and $0.600 / 1M output tokens.

F.1. LLM System Prompts
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System prompts:

Given a list of sentences, reformat each sentence to the simplest phrases that would distinguish it from the other

examples. Here are some formatting rules to follow:

1. If a sentence contains OBJECTS and ATTRIBUTES which belong to that object, the ATTRIBUTE must always

come first. For example, given the sentence “A dog which is purple", reformat it to “A purple dog".

2. If a sentence contains NEGATION, the NEGATING TERM always comes before the OBJECT clause. For example,

given “This image contains a chicken but a butterfly is absent", reformat it to “Chicken but no butterfly".

3. If a sentence contains PREPOSITIONs, try your best to make sure that the OBJECTS the PREPOSITION is

describing are immediately before and after the PREPOSITION. For example, given “A bug which is flying much

farther up from the bench", reformat it to “A flying bug above a bench".

4. Whenever possible, reformat VERBs to be ATTRIBUTES. For example, given “A dog dancing while his owner is

jumping", reformat it to “Dancing dog and jumping owner".

5. If two sentences are very close to each other, reduce them down to the salient components. For example, given the

sentences ["Butterflies in the clouds, a cat squatting looking up at it, and a man standing behind the cat watching it, on

the grass with a tree.", “Butterflies in the clouds, a cat squatting looking up at it, and a man sitting behind the cat

watching it, on the grass with a tree."], return: 0: “A man standing", 1: “A man sitting". (Of course, if there are other

sentences in the list that are similar, you may want to keep more details so that the sentences are still distinguishable.)

Here are some more general examples. If given the following sentences: ["A desktop computer sitting on top of a

gray oak table lights up the room" ,"A gray oak computer sitting on top of a desktop table lights up the room", “A

kitchen has metal cabinets and black countertops with shiny lights on top.", “A kitchen has black cabinets and metal

countertops with shiny lights on top."], return: 0: “Desktop computer top of gray oak table", 1: “Gray oak computer

top of desktop table", 2: “Metal cabinets and black countertops", 3: “Black cabinets and metal countertops".

As a rule, be AS CONCISE AS POSSIBLE. If any information is repeated and unnecessary to keep in order to

distinguish that text prompt from the others, discard it.

Now, reformat the following list of sentences and return the JSON output. Do not include anything other than the JSON

array in your answer.

Table 7. Prompt template for simplifying natural language prompts.
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System prompts:

You are given: A LOOKUP LIST of functional words (e.g., ["ABOVE", “BELOW", “INSIDE OF", “MANY", “SMALL",

“NO"]). A list of SENTENCES to process. Definitions: Functional words include: (a) Prepositions (e.g., ABOVE,

BELOW, INSIDE OF, ON, IN, NEAR) or their synonyms. (b) Size/shape terms (e.g., SMALL, BIG). (c) Numerical

terms (e.g., ONE, TWO, THREE, etc.). If a number is greater than 5 (e.g., SEVEN, 100), replace it with “MANY".

(d) Negatory terms (e.g., NO, WITHOUT). Non-functional words: Do not include verbs, adjectives, or any nouns

unrelated to the functional categories above. Examples of non-functional words include “jumping", “sleeping", “cat",

“man", etc. These should not be added to the LOOKUP LIST, even if they appear in the sentences. Even if there are

two sentences that are very similar, do not try to distinguish them by adding these verbs, adjectives, or nouns to the

LOOKUP LIST. Any form of a verb, including present participles, may not go in the LOOKUP LIST, no matter how

frequently it appears in the sentences.

Rules: For each sentence: Identify any functional words or synonyms (including numbers). If a functional word or

one of its synonyms (by meaning) appears in the sentence and is already in the LOOKUP LIST, replace it in the

sentence with the LOOKUP LIST key, surrounded by angle brackets (e.g., “⟨ ABOVE⟩ “). If that functional word

is not in the LOOKUP LIST (and it is truly functional by the above definition), add it to the LOOKUP LIST, then

replace its appearance with that new all-caps key in angle brackets. Do not add duplicates to the LOOKUP LIST.

Do not add verbs, adjectives, or any non-functional words to the LOOKUP LIST. Replace numbers greater than 5

with “MANY" (add “MANY" to the list if not already present). After processing all sentences, output exactly one

JSON array containing two sub-arrays: The first sub-array: the UPDATED LOOKUP LIST (only functional words, no

duplicates). The second sub-array: the FINAL TRANSFORMED SENTENCES (with functional words surrounded

by ⟨ ⟩ ). Not every sentence needs functional words. Provide no additional commentary or text besides this JSON

structure. Example of the required output format: [ [ “ABOVE", “INSIDE OF", “MANY" , “RIGHT OF"], [ “A bird ⟨
ABOVE⟩ a tree", “Fifteen dogs is ⟨ MANY⟩ dogs" , “A sitting chicken is ⟨ INSIDE OF⟩ a house"] ] Example of wrong output: [ [

“ABOVE", “INSIDE OF", “MANY" , “RIGHT OF", “SITTING", “DOGS", “HOUSE"], [ “A bird ⟨ ABOVE⟩ a tree", “Fifteen dogs

is ⟨ MANY⟩ dogs" , “A sitting chicken is ⟨ INSIDE OF⟩ a house"] ]

Before you return the output, CHECK THAT THE LOOKUP LIST ONLY CONTAINS FUNCTIONAL WORDS.

Table 8. Prompt template for extracting functional words.

Swapping Objects:

Given an input sentence describing a scene, your task is to first locate two swappable noun phrases in the sentence,

and then swap them to make a new sentence. The new sentence must meet the following three requirements: 1. The

new sentence must be describing a different scene from the input sentence. 2. The new sentence must be fluent and

grammatically correct. 3. The new sentence must make logical sense.

To complete the task, you should: 1. Answer the question of whether generating such a new sentence is possible using

“Yes" or “No". 2. Output the swappable noun phrases. 3. Swap them to make a new sentence.

Please produce a **single JSON array** (no extra text or explanation) for each input sentence. If there are K input

sentences, return a list with K JSON objects separated by commas. Each element in the array must be a JSON

object with the following structure: { “possible": “⟨Yes or No⟩", “swappable-noun-phrases": ["⟨NP1⟩", “⟨NP2⟩"],

“swapped-sentence": “⟨the swapped sentence⟩" }

Example JSON output for the original sentence: “A cat resting on a laptop next to a person." { “possible": “Yes",

“swappable-noun-phrases": ["laptop", “person"], “swapped-sentence": “A cat resting on a person next to a laptop." }

Table 9. Prompt template for creating captions for swapped objects. This is a minorly changed version from [16].
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