
MAESTRO: Task-Relevant Optimization via Adaptive Feature Enhancement
and Suppression for Multi-task 3D Perception

Supplementary Material

In this supplementary material, we provide additional
details that could not be included in the main paper due to
space constraints. Section 1 presents Experimental Details,
including training configurations, implementation specifics,
and dataset descriptions. Sections 2 and 3 provide Exten-
sive Quantitative Results and Additional Ablation Studies,
offering further empirical analysis and detailed component
evaluation. Section 4 presents Extensive Qualitative Re-
sults, illustrating additional visual comparisons to further
demonstrate the effectiveness of MAESTRO across diverse
scenarios.

1. Experimental Details

1.1. Datasets

We conducted our experiments on the nuScenes dataset [2]
for 3D object detection and BEV map segmentation, and
on the Occ3D-nuScenes dataset [24] for 3D occupancy pre-
diction. To evaluate generalization performance, we further
evaluated the proposed method on the Waymo Open Dataset
(WOD) [23] for 3D object detection and the Occ3D-Waymo
dataset [24] for 3D occupancy prediction.
nuScenes Datasets. The nuScenes dataset consists of 700
training, 150 validation, and 150 test scenes, each span-
ning 20 seconds. Annotations are provided at 2 Hz, result-
ing in 28,130 training samples and 6,019 validation sam-
ples. Each sample includes six camera images covering
a full 360◦ field of view. The Occ3D-nuScenes dataset
extends nuScenes dataset with voxel-level semantic occu-
pancy ground truth in the ego coordinate frame, covering
a spatial range of [−40m, −40m, −1m] to [40m, 40m,
5.4m] with a resolution of [0.4m, 0.4m, 0.4m]. The
dataset includes annotations for 18 classes: 17 semantic cat-
egories and an additional “free” class representing unoccu-
pied space. Visibility masks are also provided to facilitate
evaluation within regions observable by the sensors.
Waymo Open Datasets. The WOD consists of 798 train-
ing, 202 validation, and 150 test segments, each lasting 20
seconds and recorded at 10 Hz, resulting in 159,600 training
and 40,400 validation samples. Each sample includes five
synchronized cameras and five LiDARs. For semantic oc-
cupancy prediction, we use the Occ3D-Waymo dataset [24],
which provides dense voxel-level ground truth annotations
across 16 semantic categories, including a “free” class rep-
resenting unoccupied space. The spatial range of Occ3D-
Waymo matches that of Occ3D-nuScenes.

1.2. Evaluation Metrics
3D Object Detection on nuScenes dataset. For 3D ob-
ject detection on the nuScenes dataset, we adopt the official
nuScenes evaluation protocol [2], which includes mean Av-
erage Precision (mAP) and the nuScenes Detection Score
(NDS). The mAP is calculated based on center distance
thresholds of 0.5m, 1.0m, 2.0m, 4.0m, averaged across 10
object categories. The NDS evaluates 3D object detec-
tion performance by combining mAP with five error met-
rics: Average Translation Error (ATE), Average Scale Error
(ASE), Average Orientation Error (AOE), Average Velocity
Error (AVE), and Average Attribute Error (AAE).
BEV Map Segmentation on nuScenes dataset. For BEV
map segmentation, we adopt the evaluation setup from
BEVFusion [17], computing binary segmentation metrics
separately for six background categories. The perfor-
mance is measured using the mean Intersection-over-Union
(mIoU), selecting the maximum IoU across multiple thresh-
olds to ensure a fair evaluation of BEV elements with vary-
ing spatial scales.
3D Object Detection on Waymo Open Dataset. 3D object
detection performance on WOD is measured using the offi-
cial evaluation metrics [23], reporting mean Average Pre-
cision (mAP) and its heading-aware counterpart, mAPH.
Each metric is calculated over three distance intervals (0-
30m, 30-50m, 50m-∞), and their average provides the final
evaluation score.
3D Occupancy Prediction on nuScenes and Waymo
Open Dataset. For semantic occupancy prediction on
Occ3D-nuScenes and Occ3D-Waymo, we employ mean
Intersection-over-Union (mIoU) as the primary evaluation
metric. The mIoU quantifies the overlap between predicted
and ground-truth voxel-wise labels and is computed as:

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
, (1)

where C denotes the number of semantic categories (ex-
cluding the “free” class), and TPc, FPc, and FNc represent
the true positives, false positives, and false negatives for
class c, respectively.

1.3. Implementation Details
Backbone and Input Representation. MAESTRO em-
ploys ResNet-50 [5] with Feature Pyramid Network (FPN)
[15] as the image backbone, resizing input images to
a resolution of 256×704. The perception range spans



Method mAP ↑ NDS ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
BEVDet [7] 29.8 37.9 0.73 0.28 0.59 0.86 0.25
DETR3D [25] 30.3 37.4 0.86 0.28 0.44 0.97 0.24
BEVDepth * [13] 33.7 41.4 0.65 0.27 0.57 0.84 0.22
BEVFormer v2 [28] 35.1 41.4 0.73 0.27 0.51 0.90 0.20
Dual-BEV † [12] 35.2 42.5 0.64 0.27 0.52 0.84 0.22

Ours-MTL 36.4 43.2 0.60 0.29 0.56 0.80 0.25

Table 1. Performance comparison with existing methods for object detection benchmark on the nuScenes validation set. “*” denotes the
performance reported by Dual-BEV [12]. † indicates the method using CBGS for training.

Method Drivable ↑ Ped. Cross. ↑ Walkway ↑ Stop Line ↑ Carpark ↑ Divider ↑ Mean ↑
CVT [32] 74.8 25.8 45.2 16.2 36.7 27.6 37.7
LSS [20] 76.0 33.3 45.5 20.1 39.8 31.4 41.0
BEVFusion [17] 78.0 42.8 49.7 31.3 43.1 37.8 47.1
DifFUSER [11] 77.8 44.2 50.6 33.3 45.6 38.5 48.3

Ours-MTL 80.3 45.9 55.4 36.1 48.3 41.8 51.3

Table 2. Performance comparison with previous methods for BEV map segmentation on the nuScenes validation set. “Drivable” and
“Ped. Cross.” denote drivable surface and pedestrian crosswalk. All methods were trained without employing class-balanced grouping and
sampling (CBGS), and adopted ResNet-50 [5] as the image backbone for fair comparison.

Method Modality image backbone mIoU (Map)
BEVFusion [17] C Swin-T 56.6
MapPrior [34] C Swin-T 56.7

Ours-MTL C Swin-T 57.5

Table 3. Performance comparison with existing camera-based map
segmentation methods trained with Swin-T [16] image backbone
and CBGS [33] on the nuScenes validation set.

[−51.2m, 51.2m] for nuScenes and [−75.2m, 75.2m] for
the WOD along the X and Y axes, and [−1m, 5.4m] for
nuScenes and [−5m, 7.8m] for WOD along the Z axis, all
with a voxel resolution of 0.4m. For occupancy prediction,
features within the spatial region of ±40m along the X and
Y axes are cropped to align with the annotated regions of
the Occ3D-nuScenes and Occ3D-Waymo datasets [24], en-
abling dense voxel-based predictions.
Task-Specific Heads. We employed task-specific heads
optimized for their respective tasks, each processing task-
specific features to generate independent predictions. The
3D object detection head adopts the anchor-free architec-
ture of CenterPoint [30], operating on task-specific BEV
features to predict precise 3D bounding boxes. The BEV
map segmentation head utilizes the segmentation head from
BEVFusion [17], directly processing task-specific features
for BEV map segmentation. The 3D occupancy predic-
tion head adopts the transformer-based architecture of Oc-
cFormer [31], utilizing scene prototypes and task-specific
features to produce high-resolution occupancy predictions.
Training Setup. MAESTRO was trained for 24 epochs
without employing class-balanced grouping and sampling

(CBGS) [33]. We employed the AdamW optimizer with an
initial learning rate of 1× 10−4 and a weight decay of 0.01.
The batch size was set to 8, and random flipping was applied
as a data augmentation strategy.
Hardware and Software Environment. Model training
was conducted on a system running Ubuntu 18.04, equipped
with two Intel Xeon CPUs and four RTX 3090 GPUs.

2. Extensive Quantitative Results
2.1. Quantitative results on the nuScenes dataset
3D Object Detection Performance. Table 1 presents a de-
tailed performance comparison of MAESTRO against state-
of-the-art 3D object detection methods on the nuScenes val-
idation set. MAESTRO achieves 36.4% mAP and 43.2%
NDS, outperforming existing methods [7, 13, 25, 28]. No-
tably, our method surpasses the previous state-of-the-art ap-
proach, Dual-BEV [12], by 1.2% mAP and 0.7% NDS.
BEV Map Segmentation Performance. Table 2 reports
the class-wise performance for BEV map segmentation
on the nuScenes validation set. MAESTRO achieves an
mIoU of 51.3%, outperforming the previous state-of-the-
art method, Diffuser [11], by 3.0%. Our method consis-
tently achieves higher segmentation accuracy across all cat-
egories, particularly for pedestrian crossings and dividers,
where precise localization is crucial for autonomous driv-
ing. These results demonstrate the benefit of leveraging
task-aware representations for fine-grained BEV map seg-
mentation.

In Table 3, we compare our framework with previ-
ous camera-only BEV map segmentation methods on the
nuScenes validation set. Our proposed method achieves
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MonoScene [3] R101 600×928 1.8 7.2 4.3 4.9 9.4 5.7 4.0 3.0 5.9 4.5 7.2 14.9 6.3 7.9 7.4 1.0 7.7 6.1
OccFormer [31] R101 928×1600 5.9 30.3 12.3 34.4 39.2 14.4 16.5 17.2 9.3 13.9 26.4 51.0 31.0 34.7 22.7 6.8 7.0 21.9
TPVFormer [8] R101 600×928 7.2 38.9 13.7 40.8 45.9 17.2 20.0 18.9 14.3 26.7 34.2 55.7 35.5 37.6 30.7 19.4 16.8 27.8
CTF-Occ [24] R101 640×960 8.1 39.3 20.6 38.3 42.2 16.9 24.5 22.7 21.1 23.0 31.1 53.3 33.8 38.0 33.2 20.8 18.0 28.5
SurroundOcc [26] R101 800×1333 9.5 38.5 22.1 39.8 47.0 20.5 22.5 23.8 23.0 27.3 34.3 78.3 37.0 46.3 49.7 35.9 32.1 34.6
BEVDet [7] R50 256×704 4.4 30.3 0.2 32.4 34.5 13.0 10.3 10.4 6.3 8.9 23.7 52.3 24.6 26.1 22.3 15.0 15.1 19.4
Vampire [27] R50 256×704 7.5 32.6 16.2 36.7 41.4 16.6 20.6 16.6 15.1 21.0 28.5 68.0 33.7 41.6 40.8 24.5 20.3 28.3
FB-Occ [14] R50 256×704 12.2 44.8 25.7 42.6 48.0 23.2 25.2 25.8 26.7 31.3 34.9 78.8 41.4 49.1 52.2 39.1 34.6 37.4

Ours R50 256×704 10.7 46.5 24.5 44.5 52.0 19.8 26.2 26.7 26.6 30.6 36.9 81.8 44.8 52.4 55.2 41.7 34.7 38.6

Table 4. Comparison of class-wise performance with previous single-frame methods on the Occ3D-nuScenes validation set. The “R50”
and “R101” respectively correspond to ResNet-50 and ResNet-101 [5].

Method Frames CBGS mAP NDS
BEVStereo 2 O 37.2 50.0
DualBEV 2 O 38.0 50.4
SOGDet 2 O 38.8 50.6
Ours-MTL 2 O 41.8 52.2

Table 5. Performance comparison with existing multi-frame meth-
ods on the nuScenes validation set.

57.5% mIoU, surpassing the officially reported BEVFusion
[17] (56.6% mIoU) and MapPrior [34] (56.7% mIoU) on the
same backbone. These results demonstrate that MAESTRO
maintains high performance on the different backbone set-
tings.
3D Occupancy Prediction Performance. Table 4 com-
pares class-wise 3D occupancy prediction performance on
the nuScenes validation set. MAESTRO achieves 38.6%
mIoU, surpassing previous methods [3, 8, 24, 26, 31], in-
cluding those with higher-resolution inputs or more com-
plex backbones. In particular, MAESTRO outperforms the
previous best method, FB-Occ [14], by 1.2% mIoU, demon-
strating the effectiveness of the proposed TSFG and SPA
modules in enhancing task-specific feature representations
through cross-task semantic aggregation.
Comparisons of performance on the multi-frame set-
ting. We extended our method to incorporate two-frame
input and compared its performance with other two-frame
methods. As shown in the table 5, our approach achieves
superior performance in the multi-frame setting.
Comparison with task-specific feature method. It is
challenging to directly compare our method with the task-
specific feature modeling method, such as InvPT++ [29],
which relies on 2D image features rather than BEV or voxel
representations. Similarly, MetaBEV [4] utilizes both Li-
DAR and camera inputs, whereas our method uses only

Method mAP NDS mIoU (Map) mIoU (Occ)
MoE 34.8 42.1 46.7 36.8
Ours 36.4 43.2 51.3 38.6

Table 6. Performance comparison with Mixture of Experts (MoE)
on the nuScenes validation set.

camera images, making a direct comparison unfair. There-
fore, we incorporated the Mixture-of-Experts (MoE) mod-
ule proposed in MetaBEV [4] into our baseline to reduce
task interference. As shown in the table 6, our method out-
performs the baseline enhanced with the MoE module.

2.2. Quantitative results on the WOD.
Comparisons of Waymo Open Datasets. Table 7 com-
pares our proposed method with existing camera-only
single-task methods on the Waymo Open Dataset [23] vali-
dation split. Notably, our method outperforms previous ob-
ject detection and occupancy prediction methods, achieving
6.51% mAP and 6.44% mAPH at Level 1 and 5.54% mAP
and 5.49% mAPH at Level 2 for 3D object detection, and
24.19 % mIoU for semantic occupancy prediction.

3. Additional Ablation Study
We conducted additional ablation studies on 1/4 of the
nuScenes training set for 24 epochs to further evaluate the
effectiveness of the proposed components.

3.1. Effect of pooling methods for detection proto-
type generation in SPA

Table 8 shows the impact of different pooling methods
for generating detection prototypes in SPA. MAESTRO
achieves the best performance when employing RoIAlign
[6], indicating its efficacy in extracting task-oriented fea-
tures.



Method Difficulty mAP/mAPH mIoU(
IoU3D ≥ 0.7

)
(Occ)

3D Object Detection

M3D-RPN [1] Level 1 0.35/0.34 -Level 2 0.33/0.33

CaDNN [22] Level 1 5.03/4.99 -Level 2 4.49/4.45

DEVIANT [10] Level 1 2.69/2.67 -Level 2 2.52/2.50

NeuROCS [19] Level 1 2.44/2.43 -Level 2 2.29/2.28

MonoUNI [9] Level 1 3.20/3.16 -Level 2 3.04/3.00

MonoDGP [21] Level 1 4.28/4.23 -Level 2 4.00/3.96
Semantic Occupancy Prediction

BEVDet [7] - - 9.88
TPVFormer [8] - - 16.76
CTF-Occ [24] - - 18.73

Ours-MTL Level 1 6.51/6.44 24.19Level 2 5.54/5.49

Table 7. Comparison of performance on Waymo Open Dataset
validation split.

Method RoI Align RoI Pooling

mIoU (Occ) 36.9 36.5

Table 8. Ablation study of the pooling method for Detection pro-
totypes.

Method Summation Concatenation

mIoU (Occ) 36.9 36.6

Table 9. Ablation study of the aggregation method for SPA.

3.2. Effect of different prototype aggregation meth-
ods in SPA

Table 9 presents the effectiveness of different aggregation
methods employed in SPA. MAESTRO achieves superior
performance with Summation, attaining an mIoU of 36.9%
compared to 36.6% with Concatenation. These results in-
dicate that direct summation effectively preserves semantic
information beneficial for occupancy prediction.

In the Table 10, we compare our proposed strategy with
a similarity-based approach that aligns task-oriented pro-
totypes with prototype groups using cosine similarity fol-
lowed by summation. The similarity-based method yields
inferior performance, demonstrating the effectiveness of
our explicit fusion strategy.

Method mAP NDS mIoU (Map) mIoU (Occ)
Similarity-based 32.5 34.3 44.1 35.7

Ours 32.6 34.3 44.2 36.9

Table 10. Ablation study for different prototype aggregation meth-
ods in SPA.

4. Extensive Qualitative Analysis
4.1. Additional Qualitative Results
To further illustrate the effectiveness of MAESTRO, we
present additional qualitative comparisons against existing
methods across multiple 3D perception tasks.

Figure 1 provides a qualitative comparison of BEV map
segmentation results. MAESTRO accurately delineates var-
ious road elements, including drivable surfaces, dividers,
pedestrian crossings, and parking areas, demonstrating su-
perior spatial consistency and structural alignment com-
pared to existing methods. Notably, MAESTRO produces
finer-grained segmentation boundaries, reducing false posi-
tive predictions in critical areas.

Figure 2 compares occupancy prediction results with
state-of-the-art approaches. Our method generates more
precise occupancy predictions, particularly in occluded
or distant regions, as highlighted by the red-dashed re-
gions. MAESTRO effectively reconstructs fine-grained
scene structures while suppressing erroneous predictions,
demonstrating superior scene understanding and spatial rea-
soning capabilities.

Figures 3 and 4 evaluate MAESTRO’s robustness under
diverse environmental conditions, including sunny, cloudy,
rainy, and nighttime scenarios. Despite significant vari-
ations in illumination, scene texture, and visibility, our
method consistently produces stable and semantically co-
herent occupancy predictions. Specifically, MAESTRO ac-
curately preserves the structure of drivable surfaces and
surrounding obstacles, even in adverse conditions such as
heavy rain or extreme darkness.
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Figure 1. Comparison with existing methods using qualitative visualization on the nuScenes validation set.
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Figure 2. Comparison with existing methods using qualitative visualization on the Occ3D-nuScenes validation set. COTR [18] is
reproduced by leveraging official code on the single-frame setting.
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Figure 3. Qualitative results under sunny and cloudy conditions on Occ3D-nuScenes validation set.
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Figure 4. Qualitative results under rainy and night conditions on Occ3D-nuScenes validation set.
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