
Open-ended Hierarchical Streaming Video Understanding
with Vision Language Models

Supplementary Material

Time

“Turn on faucet” “Rinse vegetables” “Hold knife”

“Wash vegetables” “Grip knife”

0.3 0.45 0.8
GT

Pred

tIoU

tIoU based

Hungarian Matching “Rinse vegetables”

“Wash vegetables”

“Grip knife”

“Peel onion”

“Open fridge”

Cosin
e Sim

ila
rit

y

All GT Descriptions

(b)(a)

Figure 1. (a) tIoU -based Hungarian matching. Hungarian matching provides optimal one-to-one matching in terms of maximizing
tIoU, unlike greedy matching which allows duplication. Here, the algorithm selects ”Rinse vegetables” as the best match for the GT
”Wash vegetables”. With a predefined tIoU threshold of 0.3, ”Rinse vegetables” is considered a True Positive (TP), while the unmatched
prediction ”Turn on faucet” is classified as a False Positive (FP). If no prediction matches the GT or fails to meet the threshold, the
instance is counted as a False Negative (FN). (b) The description ”Rinse vegetables”, initially marked as a TP in F1 (loc.), is encoded into
an embedding vector. Similarly, all GT descriptions in the test split are encoded, and pairwise cosine similarities are computed. If ”Wash
vegetables” appears among the top 5 most similar GT descriptions, ”Rinse vegetables” is confirmed as a TP.

A. Details of Metrics
This section provides detailed explanations of the evalua-
tion metrics presented in the main text.

Algorithm 1 get hungarian score in Python.

def get_hungarian_score(answer:list, prediction:list
, iou_threshold=0.5):

’’’
IN: answer[[st,ed],[st,ed]...],
prediction[[st,ed],[st,ed]...]
OUT: f1_score (float)
’’’
profit = np.zeros((len(answer), len(prediction)))
#calculate pairwise iou
for i in range(len(answer)):

for j in range(len(prediction)):
profit[i][j] = calculate_iou(answer[i],

prediction[j])
#perform Hungarian Matching
r, c = optimize.linear_sum_assignment(profit,

maximize=True)
tp = np.sum(np.where(profit[r, c] >=

iou_threshold, 1, 0))
a = answer.shape[0]
p = prediction.shape[0]
#return F1 score
return 2*tp/(a+p)

Class-agnostic F1 [F1 (loc.)] Previous work [6] con-
ducted an in-depth study on appropriate metrics for eval-
uating class-agnostic action proposals in a streaming set-
ting, revealing that Hungarian F1 is an effective measure
of performance. Accordingly, we use Hungarian F1 (here-
after, F1 (loc.)) to evaluate the streaming perception mod-

Method Heir. CIDEr METEOR

GT Proposal Step 17.7739 8.4363
Substep 32.8570 10.7680

OpenHOUSE Step 7.1885 4.1640
Substep 14.3946 5.5151

Table 1. CIDEr, METEOR in EgoGS using evaluation tool [7].

ule. This metric employs the Hungarian matching algo-
rithm [8], which provides optimal bipartite matching be-
tween class-agnostic ground truth {(tsm, tem)}Mm=1 and the
model’s predictions {(t̂sm, t̂em)}M̂m=1 in terms of tIoU . A
prediction is considered a true positive if the overlap with
the matched GT exceeds a predefined tIoU (in our paper,
tIoU ∈ {0.3, 0.5, 0.7}) threshold. Figure 1 (a) illustrates
tIoU-based Hungarian matching and Algorithm 1 presents
a brief Python implementation for calculating F1 (loc.).
Top-k F1 [F1 (loc. + desc.)] While F1 (loc.) only mea-
sures class-agnostic action proposals, our final output in-
cludes free-form descriptions of action instances. To ac-
count for this, we extend F1 (loc.) to define F1 (loc. +
desc.), adding a semantic relevance constraint for True Pos-
itives (TP) beyond the tIoU condition. First, tIoU-based
Hungarian matching is performed, identical to F1 (loc.).
Predictions that pass the tIoU threshold are considered can-
didates. Each candidate prediction {sp, ep, dp} is matched
to a ground truth (GT) instance {sgt, egt, dgt} where s and e
are the start and end times, and d represents the description.
(Section 3.1)

Time

“Turn on faucet” “Rinse vegetables” “Hold knife”

“Wash vegetables” “Grip knife”

0.3 0.45 0.8
GT

Pred

tIoU

tIoU based

Greedy Matching

(b)(a)

“Rinse vegetables”

“Wash vegetables”

“Grip knife”

Matched GT
Descriptions

“Turn on faucet”

“Hold knife”

Figure 2. An example of calculating GPT, or BERTscore. With a tIoU threshold of 0.3, the predictions ”Turn on faucet” and ”Rinse
vegetables” are matched with the GT ”Wash vegetables”, while ”Hold knife” is matched with ”Grip knife”. This duplicated matching
with ”Wash vegetables” highlights a key difference from the Hungarian F1 metric. After matching, GPT-Score or BERTscore is computed
for each matched pair, and the final score is obtained by averaging all pair scores.

CIDEr : 0/10

GT :
Operates phone

Example 3 GPT-score : 4.75/5

CIDEr : 0/10

GT :
pour chili flakes

Example 1 GPT-score : 3.5/5

OpenHOUSE :
The person adds seasoning
to the vegetables in the
pan

CIDEr : 0/10

GT :
peels onions

Example 2 GPT-score : 5.0/5

OpenHOUSE :
peel the onion

OpenHOUSE :
The person is using their
smartphone

Figure 3. Examples of CIDEr [14] and GPT-Score [9] results from
EgoGS dataset. Each score was computed at tIoU 0.3. GPT-Score
reflects the average of four semantic dimensions: CU, CO, DO,
and TU.

The final step is to determine whether dp and dgt match
or not. Since dp is a free-form output from a powerful
large-scale VLM, it tends to be highly detailed, making
semantic relevance crucial—something traditional N-gram-
based metrics fail to capture. To effectively evaluate the se-

mantic relevance of the matched prediction, we use a zero-
shot evaluation approach inspired by CLIP [11]. For each
matched prediction, we encode the candidate description dp
and all GT descriptions {dm}Mm=1 using a GPT-4 [1] text
encoder, where M represents the total number of GT de-
scriptions in the whole test split. Pairwise cosine similar-
ity is then calculated between dp and all GT descriptions,
which are subsequently ranked by similarity. If the matched
dgt appears in the top-k rankings, the prediction is finally
classified as a TP. Figure 1 (b) provides an example of this
process. For all experiment, we choose k = 5 as we empir-
ically found that at least five ground truth descriptions often
share near-identical semantics.
Description Quality Metrics In addition to the main met-
rics, we use another metrics to evaluate the generated de-
scriptions: GPT-Score [9] and BERTscore [15], as intro-
duced in Section 4 of the main text. For GPTScore, we
follow [9], scoring all true positive predictions on a 1–5
scale across the CI (Correctness of Information), DO (De-
tailed Orientation), CU (Contextual Understanding), and
TU (Temporal Understanding) categories using GPT-3.5.
The CO (Consistency) category is excluded as it is not suit-
able for evaluating hierarchical action descriptions. De-
tailed prompts used for evaluating the CI, DO, CU, and
TU categories can be found in Prompt 1, 2, 3, 4. Un-
like F1 (loc.), which identifies optimal one-to-one match-
ing between ground truth and predictions, these metrics use
greedy matching, allowing multiple predictions to match the
same ground truth. A predefined tIoU threshold is applied
to filter predictions before calculating the scores.
N-gram based metric We found that popular N-gram-
based methods (e.g. CIDEr [14]) are not suitable for eval-
uating the caption quality of OpenHOUSE. Since we use a
powerful VLM in a zero-shot setting, it often produces de-
tailed descriptions that may align even better with the actual
action than the ground truth, but may not share the exact

Prompt 1 CI Prompt for Evaluation.

role: system,
content:

You are an intelligent chatbot designed for evaluating
the factual accuracy of generative outputs for video
-based question-answer pairs.

Your task is to compare the predicted answer with the
correct answer and determine if they are factually
consistent. Here’s how you can accomplish the task:

##INSTRUCTIONS:
- Focus on the factual consistency between the predicted

answer and the correct answer. The predicted answer
should not contain any misinterpretations or
misinformation.

- The predicted answer must be factually accurate and
align with the video content.

- Consider synonyms or paraphrases as valid matches.
- Evaluate the factual accuracy of the prediction

compared to the answer.

role: user,
content:

Please evaluate the following video-based question-answer
pair:"

Question: {question}
Correct Answer: {answer}
Predicted Answer: {pred}
Provide your evaluation only as a factual accuracy score

where the factual accuracy score is an integer value
between 0 and 5, with 5 indicating the highest

level of factual consistency.
Please generate the response in the form of a Python

dictionary string with keys ’score’, where its value
is the factual accuracy score in INTEGER, not

STRING.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only

provide the Python dictionary string.
For example, your response should look like this: {’’

score’: 4.8}.

Prompt 2 DO Prompt for Evaluation.

role: system,
content:

You are an intelligent chatbot designed for evaluating
the detail orientation of generative outputs for
video-based question-answer pairs.

Your task is to compare the predicted answer with the
correct answer and determine its level of detail,
considering both completeness and specificity. Here’
s how you can accomplish the task:

##INSTRUCTIONS:
- Check if the predicted answer covers all major points

from the video. The response should not leave out
any key aspects.

- Evaluate whether the predicted answer includes specific
details rather than just generic points. It should

provide comprehensive information that is tied to
specific elements of the video.

- Consider synonyms or paraphrases as valid matches.
- Provide a single evaluation score that reflects the

level of detail orientation of the prediction,
considering both completeness and specificity.

role: user,
content:

Please evaluate the following video-based question-answer
pair:

Question: {question}
Correct Answer: {answer}
Predicted Answer: {pred}
Provide your evaluation only as a detail orientation

score where the detail orientation score is an
integer value between 0 and 5, with 5 indicating the
highest level of detail orientation.

Please generate the response in the form of a Python
dictionary string with keys ’score’, where its value
is the detail orientation score in INTEGER, not

STRING.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only

provide the Python dictionary string.
For example, your response should look like this: {’’

score’: 4.8}.

Prompt 3 CU Prompt for Evaluation.

role: system,
content:

You are an intelligent chatbot designed for evaluating
the contextual understanding of generative outputs
for video-based question-answer pairs.

Your task is to compare the predicted answer with the
correct answer and determine if the generated
response aligns with the overall context of the
video content. Here’s how you can accomplish the
task:

##INSTRUCTIONS:
- Evaluate whether the predicted answer aligns with the

overall context of the video content. It should not
provide information that is out of context or
misaligned.

- The predicted answer must capture the main themes and
sentiments of the video.

- Consider synonyms or paraphrases as valid matches.
- Provide your evaluation of the contextual understanding

of the prediction compared to the answer.

role: user,
content:

Please evaluate the following video-based question-answer
pair:

Question: {question}
Correct Answer: {answer}
Predicted Answer: {pred}
Provide your evaluation only as a contextual

understanding score where the contextual
understanding score is an integer value between 0
and 5, with 5 indicating the highest level of
contextual understanding.

Please generate the response in the form of a Python
dictionary string with keys ’score’, where its value
is contextual understanding score in INTEGER, not

STRING.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only

provide the Python dictionary string.
For example, your response should look like this: {’’

score’: 4.8}.

Prompt 4 TU Prompt for Evaluation.

role: system,
content:

You are an intelligent chatbot designed for evaluating
the temporal understanding of generative outputs for
video-based question-answer pairs.

Your task is to compare the predicted answer with the
correct answer and determine if they correctly
reflect the temporal sequence of events in the video
content. Here’s how you can accomplish the task:

##INSTRUCTIONS:
- Focus on the temporal consistency between the predicted

answer and the correct answer. The predicted answer
should correctly reflect the sequence of events or

details as they are presented in the video content.
- Consider synonyms or paraphrases as valid matches, but

only if the temporal order is maintained.
- Evaluate the temporal accuracy of the prediction

compared to the answer.

role: user,
content:

Please evaluate the following video-based question-answer
pair:

Question: {question}
Correct Answer: {answer}
Predicted Answer: {pred}
Provide your evaluation only as a temporal accuracy score

where the temporal accuracy score is an integer
value between 0 and 5, with 5 indicating the highest
level of temporal consistency.

Please generate the response in the form of a Python
dictionary string with keys ’score’, where its value
is the temporal accuracy score in INTEGER, not

STRING.
DO NOT PROVIDE ANY OTHER OUTPUT TEXT OR EXPLANATION. Only

provide the Python dictionary string.
For example, your response should look like this: {’’

score’: 4.8}.

vocabulary with the ground truth. This is not a flaw to pe-
nalize but rather aligns with our ultimate goal of open-ended
understanding. However, N-gram-based methods require
exact word matches, which unjustly penalizes our more de-
tailed descriptions.

Figure 3 illustrates some examples of this. Unlike N-
gram based method (CIDEr [14]), we found that the met-
rics that leverage large-scale language models, such as GPT-
based scoring (GPT-Score [9]), offers a more robust evalua-
tion framework for semantic similarity. Note that our main
metric, F1 (loc. + desc.), also uses a powerful VLM’s text
encoder [1] for encoding the descriptions into vector repre-
sentations, effectively capturing semantic correspondence.
For completeness, we provide results of N-gram based met-
ric in Table 1.

B. Utilization of Different VLMs

One of the key components of our system is the VLM,
which generates free-form descriptions. Table 3 shows the
variation in caption quality with different VLMs. The re-
sults indicate that while more advanced VLMs generally
improve performance, there is a point of diminishing gains
once the VLM is sufficiently powerful. This highlights the
inherent complexity of Hierarchical Streaming Video Un-
derstanding; further improvements cannot rely solely on
VLM advancements—enhancing the streaming module is
also crucial for meaningful progress.

C. Generating descriptions for incomplete
action instances

In Section 4 of the main text, we reported results where the
streaming module invoked the VLM to predict substeps and
steps at the points when each action instance ended, and to
predict the overall goal when the video finished. However,

Method Completion Hier.
F1 (loc. + desc.) ↑ Goal

Acc. ↑0.3 0.5 0.7

GT

25% Step 18.93 18.93 18.93 39.55Substep 23.66 23.66 23.66

50% Step 24.56 24.56 24.56 45.52Substep 28.52 28.52 28.52

75% Step 26.53 26.53 26.53 47.76Substep 31.78 31.78 31.78

100% Step 28.68 28.68 28.68 47.01Substep 33.12 33.12 33.12

OpenHouse

25% Step 9.68 7.86 5.36 44.03Substep 13.55 11.14 8.05

50% Step 12.84 10.66 7.45 42.54Substep 16.99 13.93 9.91

75% Step 14.36 12.02 8.38 45.52Substep 18.8 15.41 10.66

100% Step 15.23 12.67 8.680 47.76Substep 19.79 16.11 10.89

Table 2. Experiments on EgoGS validating description generation
for incomplete action instances.

in real world scenarios, it is crucial to generate predictions
even when an action instance or video is still in progress.

Thus, in this section, we present the prediction results for
substep instances, step instances, and the entire video at var-
ious completion stages: 25%, 50%, 75%, and 100%. This
analysis aims to demonstrate the OpenHOUSE’s ability to
provide reliable predictions for substeps, steps, and goals
even before an action instance or the entire video reaches
completion.

Table 2 presents the VLM inference results on both
ground truth (GT) temporal annotations and those generated
by the OpenHOUSE streaming module at different comple-
tion stages. While there is a clear trend of improved perfor-
mance with increased observation, the results at 50% com-
pletion show only slight degradation compared to full ob-
servation. Note that we only have 134 test samples for goal
accuracy, so a single correct or incorrect prediction can lead
to approximately a 1% fluctuation in performance, explain-
ing the observed perturbations.

These findings highlight that OpenHOUSE can provide
reliable inferences even when only partial information is
available, emphasizing the potential of OpenHOUSE in
real-world, online scenarios where actions are often incom-
plete.

D. Dataset Analysis
In Section D, we aim to discuss the comparison between
the Ego4D GoalStep (EgoGS) dataset and the Ego4D Goal-
Step pseudo (EgoGS pseudo) dataset generated through
our dataset generation pipeline. Additionally, we provide
statistics on the reconstructed hierarchical datasets, includ-
ing Ego-Exo4D Keystep (EgEx) and Epic-Kitchens 100
(EK100).
Comparison between EgoGS and EgoGS pseudo Figure
4 (a) illustrates a comparison of step segment durations be-
tween EgoGS and EgoGS pseudo. The step segment du-
ration for EgoGS averages 50.69 seconds, slightly differ-
ing from the original value reported in the Ego4D Goal-
Step dataset [12] because only the train and validation data,
excluding the test dataset, were used for this calculation.
EgoGS pseudo has an average step segment duration of
46.08 seconds, which is similar to EgoGS. Additionally,
the overall distribution of step segment durations for EgoGS
pseudo aligns well with that of EgoGS. This demonstrates
that the dataset generated through our pipeline effectively
approximates the original dataset.
Dataset Statistics Figure 4 (b), (c), (d) respectively illus-
trate the distributions of goal, step, and substep segment
durations for EgoGS pseudo, EgEx, and EK100. The goal,
step, and substep segments of EgoGS pseudo have aver-
age durations of 1532.32 seconds, 46.08 seconds, and 22.44
seconds, respectively. For EgEx, the goal, step, and substep
segments have average durations of 308.09 seconds, 32.69

Model Hier.
F1 (loc. + cap.) ↑ GPT-Score ↑ [9]

BERTScore ↑ [15]
0.3 0.5 0.7 CI DO CU TU

GPT-4o [10] Step 15.53 12.65 8.59 3.33 2.688 3.559 2.852 0.857
Substep 19.51 16.15 11.19 3.027 2.595 3.336 2.706 0.866

InternVL2-40B-AWQ [3] Step 15.23 12.67 8.68 3.192 2.606 3.381 2.670 0.858
Substep 19.79 16.11 10.89 2.869 2.559 3.164 2.543 0.873

InternVL2-8B [3] Step 10.01 8.21 5.49 2.791 2.374 3.053 2.222 0.843
Substep 13.09 10.65 7.57 2.245 2.248 2.644 1.978 0.862

Table 3. Experimental results on the EgoGS dataset using different VLMs. Here, CI, DO, CU, TU in GPT-Score refer to “Correctness of
Information”, “Detail Orientation”, “Contextual Understanding”, “Temporal Understanding” respectively.

(a) (b)

(c) (d)

Figure 4. Dataset statistics

seconds, and 11.21 seconds, respectively. The goal, step,
and substep segments of EK100 have average durations of
499.92 seconds, 22.66 seconds, and 3.03 seconds, respec-
tively.
Human Validators in Dataset Generation Five human an-
notators participated in the dataset annotation and valida-
tion process. Each annotator contributed approximately 20
hours of work and was compensated $200.

E. VLM inference details

In section E, we describe the details of the inference process
for each level in the hierarchy: substep, step, and goal, us-
ing VLM. Additionally, we provide comprehensive details
regarding inference speed measurement

Substep Inference Each substep is inferred using the fol-
lowing inputs: (i) video frames sampled at 1-second inter-
vals from the corresponding substep instance, and (ii) text
predictions from prior substeps within the same step. With
these inputs, predictions are made using the prompt 7. The
generated short form response serves as the prediction re-

Prompt 5 Goal Prompt for VLM inference.

I am planning to add annotations to a video. The annotations
form a three-level hierarchy: goal, steps, and

substeps. Here are the specific requirements:
1. Goal Annotation: There is only one goal annotation for

the entire video.
2. Step Annotations: Each step annotation is ordered

chronologically and must follow the completion of all
substeps within the previous step. For example, Step 2
cannot begin until all substeps of Step 1 are completed
.

3. Substep Annotations: These are specific parts of the
video that detail the actions within each step.

Given an image sequence extracted from a video, predict the
most appropriate goal for the video based on the frames
from each step and the short form responses for each

step.
The short form responses of the steps are provided as a time

-ordered list in text format, where the 0th index is
the earliest step and higher indices represent more
recent steps.

Utilize this context to predict the overall goal of the
video.

Generate a response:
The response should consist of a single sentence that

succinctly describes the goal.
Use the following list of short form responses for each step

(in text format and time-ordered):
Short form response of step: {short_form_step}

Output format must be:
Answer: (goal)

Prompt 6 Step Prompt for VLM inference.

I am planning to add annotations to a video. The annotations
form a three-level hierarchy: goal, steps, and

substeps. Here are the specific requirements:
1. Goal Annotation: There is only one goal annotation for

the entire video.
2. Step Annotations: Each step annotation is ordered

chronologically and must follow the completion of all
substeps within the previous step. For example, Step 2
cannot begin until all substeps of Step 1 are completed
.

3. Substep Annotations: These are specific parts of the
video that detail the actions within each step.

Given an image sequence extracted from a video clip, predict
the most appropriate step occurring in the clip based

on the sequence and the previous steps.
The previous steps are provided as a time-ordered list of

long form responses in text format, where the 0th index
is the earliest step and higher indices represent more
recent steps.

If there are no previous steps, the list will be empty. If
there are more than 10 previous steps, only the 10 most
recent responses will be provided. Utilize this

context to improve the prediction for the current step.

First, Generate two types of responses:
Short form response: A single sentence that succinctly

describes the step.
Long form response: A detailed and accurate description of

the step based on the image sequence, considering the
previous steps if provided.

After generating the responses, revise the long form
response to ensure it aligns with the short form
response for consistency.

Use the following list of previous long form responses in
text format to ensure continuity and logical
progression (the list may be empty if there are no
prior steps, and a maximum of the 10 most recent
responses will be provided):

Previous long form response: {prediction_list}

Output format must be:
Answer:
short form response: (response)
long form response (before revision): (response)
long form response (after revision): (response)

Prompt 7 Substep Prompt for VLM inference.

I am planning to add annotations to a video. The annotations
form a three-level hierarchy: goal, steps, and

substeps. Here are the specific requirements:
1. Goal Annotation: There is only one goal annotation for

the entire video.
2. Step Annotations: Each step annotation is ordered

chronologically and must follow the completion of all
substeps within the previous step. For example, Step 2
cannot begin until all substeps of Step 1 are completed
.

3. Substep Annotations: These are specific parts of the
video that detail the actions within each step.

Given an image sequence extracted from a video clip, predict
the most appropriate substep occurring in the clip

based on the sequence and the previous substeps of the
current step.

The previous substeps are provided as a time-ordered list of
long form responses in text format, where the 0th

index is the earliest substep and higher indices
represent more recent substeps.

If there are no previous substeps, the list will be empty.
Utilize this context to improve the prediction for the
current substep.

First, Generate two types of responses:
Short form response: A single sentence that succinctly

describes the substep.
Long form response: A detailed and accurate description of

the substep based on the image sequence, considering
the previous substeps if provided.

After generating the responses, revise the long form
response to ensure it aligns with the short form
response for consistency.

Use the following list of previous long form responses in
text format to ensure continuity and logical
progression (the list may be empty if there are no
prior substeps):

Previous long form response: {prediction_list}

Output format must be:
Answer:
short form response: (response)
long form response (before revision): (response)
long form response (after revision): (response)

sult, while the long form response (after revision) is used as
input for predicting the next substep.
Step Inference For step-level inference, the input consists
of: (i) images sampled from the substep instances within the
given step at 3.3-second intervals, and (ii) text predictions
from up to 10 previous steps. With these inputs, predictions
are made using the prompt 6. Again, the short form re-
sponse represents the prediction result, while the long form
response (after revision) is employed to predict the subse-
quent step.
Goal Inference Goal inference utilizes: (i) a single image
per step, and (ii) text predictions from all the steps. With
these inputs, predictions are made using the prompt 5.
Inference Speed Measurement Details As discussed in
Section 4.2, we evaluated the inference speed of a video
with 2758 * 16 frames (46 minutes at 16 fps) using the In-
tern VL2-40B-AWQ [3] model. The measurement was con-
ducted utilizing 4 * RTX 3090 GPUs. The measured FPS
represents the model’s average processing FPS.

Following the technical details in [2], the reported 24
FPS includes the entire OpenHOUSE pipeline, encompass-
ing: (i) online feature extraction from raw frames, (ii)
Streaming Module inference, and (iii) VLM inference.

F. Implementation Details
As discussed in Section 3.3.1 of the main paper, our Stream-
ing Module consists of three heads: a state-emitting head, a
progression head for steps, and a progression head for sub-
steps. Each head shares an RNN backbone comprising three
recurrent layers with a hidden state size of 768.

The state-emitting head is trained using the standard
cross-entropy loss, following the approach in [6]. The pro-
gression heads for both steps and substeps are trained using
the histogram loss described in [4], configured with 10 bins
and a standard deviation (σ) of 0.15.

We trained using AdamW optimizer with a learning rate
of 3e-4, a batch size of 16, and a weight decay of 0.01. The
model is trained for a total of 30 epochs.

G. Streaming Module Comparison
Since our streaming module is based on the Action-
Switch [6] design, we conducted apple-to-apple evaluations
on EK-100 against various class-agnostic On-TAL base-
lines. (Table 4). Key observations are: (i) Streaming
Module (SM) without hybrid detection performs compara-
bly to ActionSwitch, validating our design choice, (ii) SM
with hybrid strategy significantly outperforms prior meth-
ods, setting a new SOTA in class-agnostic On-TAL. These
results further confirm the effectiveness and superiority of
our hybrid action boundary detection method.

Method F1@0.5 Precision@0.5 Recall@0.5
CAG-QIL [5] 23.117 21.347 25.206
SimOn [13] 4.395 2.351 33.481

OAD-Grouping [5] 21.416 25.533 18.442
ActionSwitch [6] 32.444 29.858 35.519
SM w/o Hybrid 31.459 38.689 26.506

SM (OpenHOUSE) 48.954 48.172 49.763
Table 4. SM(Streaming Module) comparison in EK100 (Class-
agnostic metrics)

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ah-

mad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida,
Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al.
Gpt-4 technical report. arXiv preprint arXiv:2303.08774,
2023. 2, 4

[2] Joungbin An, Hyolim Kang, Su Ho Han, Ming-Hsuan Yang,
and Seon Joo Kim. Miniroad: Minimal rnn framework for
online action detection. In IEEE/CVF International Confer-
ence on Computer Vision (ICCV), 2023. 6

[3] Zhe Chen, Weiyun Wang, Hao Tian, Shenglong Ye, Zhang-
wei Gao, Erfei Cui, Wenwen Tong, Kongzhi Hu, Jiapeng
Luo, Zheng Ma, et al. How far are we to gpt-4v? closing
the gap to commercial multimodal models with open-source
suites. arXiv preprint arXiv:2404.16821, 2024. 5, 6

[4] Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali
Taı̈ga, Yevgen Chebotar, Ted Xiao, Alex Irpan, Sergey
Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop

regressing: Training value functions via classification for
scalable deep rl. arXiv preprint arXiv:2403.03950, 2024. 7

[5] Hyolim Kang, Kyungmin Kim, Yumin Ko, and Seon Joo
Kim. Cag-qil: Context-aware actionness grouping via q
imitation learning for online temporal action localization.
In IEEE/CVF International Conference on Computer Vision
(ICCV), 2021. 7

[6] Hyolim Kang, Jungsuk Hyun, Joungbin An, Youngjae Yu,
and Seon Joo Kim. Actionswitch: Class-agnostic detection
of simultaneous actions in streaming videos. In European
Conference on Computer Vision (ECCV), 2024. 1, 7

[7] Ranjay Krishna, Kenji Hata, Frederic Ren, Li Fei-Fei, and
Juan Carlos Niebles. Dense-captioning events in videos. In
Proceedings of the IEEE international conference on com-
puter vision, pages 706–715, 2017. 1

[8] Harold W Kuhn. The hungarian method for the assignment
problem. Naval research logistics quarterly, 1955. 1

[9] Muhammad Maaz, Hanoona Rasheed, Salman Khan, and Fa-
had Shahbaz Khan. Video-chatgpt: Towards detailed video
understanding via large vision and language models. arXiv
preprint arXiv:2306.05424, 2023. 2, 4, 5

[10] OpenAI. Hello gpt-4o, 2024. 5
[11] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya

Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning
(ICML), 2021. 2

[12] Yale Song, Eugene Byrne, Tushar Nagarajan, Huiyu Wang,
Miguel Martin, and Lorenzo Torresani. Ego4d goal-step: To-
ward hierarchical understanding of procedural activities. Ad-
vances in Neural Information Processing Systems, 2024. 4

[13] Tuan N Tang, Jungin Park, Kwonyoung Kim, and
Kwanghoon Sohn. Simon: A simple framework for
online temporal action localization. arXiv preprint
arXiv:2211.04905, 2022. 7

[14] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. Cider: Consensus-based image description evalu-
ation. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2015. 2, 4

[15] Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Wein-
berger, and Yoav Artzi. Bertscore: Evaluating text genera-
tion with bert. arXiv preprint arXiv:1904.09675, 2019. 2,
5

	Details of Metrics
	Utilization of Different VLMs
	Generating descriptions for incomplete action instances
	Dataset Analysis
	VLM inference details
	Implementation Details
	Streaming Module Comparison

