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1. Details of Motion Scale and Time Slice

Figure 1 provides details of our experimental setup. To en-

sure a fair comparison with previous works, Sec. 4.3 of the

main paper adopts the same evaluation protocol. DSEC-

3DOD provides a fixed-frame-rate sensor at 10 FPS and

blind time annotations at 100 FPS. Provided LiDAR and

RGB data are fully utilized, and each blind time is evalu-

ated with 10 ground truth annotations.

The evaluation setup of Ev-3DOD [5] allows for assess-

ing detection performance during blind time. However, due

to the limited motion in DSEC data and its fixed time inter-

vals, model performance can only be evaluated at restricted

points in time. To enable evaluation under asynchronous

and diverse temporal conditions, we define motion scale and

time slice as key evaluation setup parameters.

Motion scale is a parameter that controls scene motion

by adjusting the length of the blind time. This is achieved

by skipping consecutive frames of LiDAR and RGB data,

thereby modifying the amount of motion. Events are ac-

cumulated over the blind time and normalized in the tem-

poral domain. Motion scale control [4, 8, 11, 12, 14, 15],

which accumulates data over a longer period to represent

large motion, is a well-established method widely used in

other works for evaluating performance under large mo-

tion conditions. Therefore, following previous work, we

also adopted motion scale control to represent dynamic and

long-range motion.

Time slice controls the evaluation interval within the

blind time. Each blind time is evaluated at multiple points

determined by the time slice. This parameter introduces

variations in the distribution of event data, making it a chal-

lenging factor for assessing the temporal flexibility of event-

based methods.

We define the baseline experimental setup with a motion

scale of 1 and a time slice of 10. Evaluations were con-

ducted using various experimental parameters within the

constraints of the given fixed-frame-rate sensor and avail-

able annotations. To ensure a fair evaluation, we assessed

detection performance using only the model trained on the

baseline setup.

2. Implementation Details

Training Details. Training was conducted on two NVIDIA

TITAN RTX GPUs for 60 epochs with a batch size of 2.

The AdamW optimizer [10] was employed with a learning

rate set to 0.001.

Depth Refinement. To perform actual refinement, we com-

puted a finer probability by considering neighboring proba-

bilities. Thus, the practical implementation of Eq. (6) in the

main paper incorporates neighboring pixels as follows:

S(u, v) = 〈F sem
L (u, v), F sem

R (u− fL

Dm
init(u, v)

, v)〉, (1)

We use the m = 1, 2, 3, 4, 5 for neighboring sampling.

Event Grid size and Voxel Size. Following previous

works [5], we use the bin size of event voxel grid as 5. 3D

geometric voxel and 3D semantic voxel in Sec. 3.3 have

range of [−30.4m, 30.4m] in X axis, [−1.0m, 3.0m] in Y

axis, and [2.0m, 56.9m] for Z axis. Voxel size is set to

(0.2m, 0.2m, 0.2m).
ROI Pooling for Alignment In Sec. 3.5 of the main paper,

the ROI PG estimated by the global detector is divided into

a k × k voxel grid, for k = 3. The semantic BEV features

are pooled for each grid, and all grid features are aggregated

to estimate the local offset.

Anchor Size As mentioned in the main paper, we use an-

chors with fixed size, height and orientation for each (x, z)
coordinate in the 3D voxel space. The fixed anchor sizes are

determined by computing the class-wise box statistics from

the training set. Anchors for vehicle class and pedestrian

class are as follows:

Aveh = (x, 0.47, z, 1.79, 1.86, 4.28, {0, π
2
})

Aped = (x, 0.6, z, 1.73, 0.6, 0.8, {0, π
2
})

(2)

3. Effectiveness of Semantic-guided Depth Re-
finement

Following the KITTI stereo metric [6], we measure a depth

estimation accuracy if depth error is below a specified out-

lier threshold. Table 1 compares performance across differ-

ent outlier thresholds, highlighting the impact of semantic-

guided depth refinement (SDR). The results show that SDR

consistently enhances accuracy across all thresholds. More-

over, the depth refinement module improves not only the

final detection performance but also the overall depth esti-

mation quality.

4. Visualization on Semantic and Geometric
Features

Semantic and geometric event features serve distinct roles,

and the model utilizes them collaboratively to enhance both
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Figure 1. Visualization of the motion scale and time slice used in the experimental setup. The upper part of the figure represents the

baseline setup following Ev-3DOD [5], with a motion scale of 1 and a time slice of 10. The lower part illustrates the setup adopted to

evaluate the model under large motion and diverse event inputs.

Reference Image Input Left Event Geometric Event Feature Semantic Event Feature Semantic Voxel Feature

Figure 2. Example of input event, geometric feature, enhanced semantic feature, and semantic BEV feature. Feature values are normalized

to [0, 1] for visualization.

Table 1. Effectiveness of semantic-guided depth refinement. SDR:

Semantic-Guided Depth Refinement.

Outlier Threshold > 1.6m > 0.8m > 0.4m > 0.2m

w/o SDR 0.236 0.382 0.549 0.715

w/ SDR (Ours) 0.219 0.361 0.529 0.696

geometric and semantic information. To provide insights

into the characteristics of these features, we present visu-

alizations of the extracted representations. Geometric fea-

tures highlight complex structures that aid in stereo match-

ing, whereas semantic features exhibit strong attention to

target objects. By leveraging such object-centric informa-

tion, ROI alignment is achieved, enabling fine-grained box

regression.

5. Additional Results

Quantitative Results. Table 2 presents the quantitative re-

sults of DSEC-3DOD at the moderate difficulty level, evalu-

ated under various motion scales and time slices. Compared

to our method, other approaches exhibit more significant

performance degradation under large motions and longer



Table 2. Performance evaluation across various motion scales and time slices, presenting results for the moderate difficulty level. Each

entry corresponds to 3D / BEV detection results. VEH and PED represent vehicle and pedestrian, respectively.

Motion Time
Class

LiDAR LIDAR+RGB LiDAR+RGB+Event RGB Stereo Event Stereo

Scale Slice VoxelNeXt [3] HEDNet [13] Focals Conv [2] LoGoNet [9] Ev-3DOD [5] DSGN [1] LIGA [7] Ours

×2

×10
VEH 4.28 / 12.58 5.24 / 12.06 5.60 / 11.66 4.93 / 12.21 13.52 / 26.56 7.02 / 16.03 5.52 / 11.93 19.31 / 32.47
PED 2.43 / 3.13 1.70 / 2.48 2.14 / 2.81 1.71 / 2.62 4.91 / 8.57 1.27 / 1.88 1.75 / 2.29 12.56 / 13.99

×20
VEH 3.80 / 11.54 4.67 / 11.08 5.56 / 10.79 4.60 / 11.23 14.50 / 27.93 6.75 / 14.36 4.77 / 11.08 19.62 / 33.03
PED 2.31 / 2.48 1.49 / 2.18 1.52 / 2.15 1.44 / 2.24 1.62 / 3.19 1.26 / 1.77 1.42 / 2.12 12.93 / 14.34

×4

×10
VEH 2.03 / 5.22 2.85 / 4.78 2.73 / 3.96 1.88 / 4.37 5.59 / 10.50 3.08 / 6.27 1.82 / 4.50 16.42 / 29.01
PED 0.91 / 1.18 0.91 / 0.91 0.91 / 1.06 0.91 / 0.91 2.31 / 3.37 0.41 / 0.49 0.91 / 1.05 10.61 / 13.86

×20
VEH 1.59 / 4.29 2.27 / 4.09 2.73 / 3.55 1.88 / 3.99 5.60 / 10.26 3.06 / 5.62 1.36 / 3.87 19.31 / 32.47
PED 0.91 / 0.91 0.91 / 0.91 0.91 / 0.91 0.45 / 0.91 0.91 / 1.31 0.34 / 0.46 0.45 / 0.69 12.93 / 14.34

blind times, as they heavily rely on synchronized sensors

(e.g., RGB and LiDAR).

Qualitative Results.
We provide additional qualitative results for the motion

scale 2 and time slice 10 setup. The results demonstrate that

conventional sensor-based methods suffer from significant

detection errors due to large motion. Furthermore, com-

pared to Fig. 5 in the main paper, where the motion scale is

set to 10, Ev-3DOD exhibits a substantial performance drop

despite utilizing event data, as it remains heavily dependent

on LiDAR. In contrast, our fully asynchronous model seam-

lessly adapts to large motion, ensuring robust detection.
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Figure 3. Comparison of 3D detection during blind time. The motion scale and time slice are set to 2 and 10, respectively. Green vertical

lines across the image were added to compare the box’s relative position. Fixed-frame-rate sensor-based methods (i.e., LoGoNet [9] and

DSGN [1]) fail to predict objects during the blind time. Ev-3DOD [5] leverages monocular event data to propagate detection through blind

time, but its performance deteriorates under large movements. The proposed method operates in a fully asynchronous manner, consistently

producing stable results regardless of the blind time.


