
Appendix

A. Implementation details

Model architecture. Our transformer Ψ follows the archi-
tecture of CoTracker [6]. We set the feature dimensionality
to d = 128, use a neighborhood size of ∆ = 3, and per-
form M = 4 iterations during training and M = 6 during
evaluation.

For each query point, we extract feature patches from the
initial frame tq and from the current track estimate at frame
t: ϕtq , ϕt ∈ Rd×(2∆+1)2 .

We then compute the dot product between all pairs of
feature vectors, forming a correlation matrix:

ϕ⊤
tqϕt ∈ R(2∆+1)2×(2∆+1)2 (1)

which contains (2∆ + 1)4 = 2,401 values for ∆ = 3. An
MLP maps this correlation matrix to a 256-dimensional rep-
resentation.

Each token is then formed by concatenating these corre-
lations with additional features—visibility, confidence, and
encoded displacements—along the channel dimension. To-
kens are arranged into a grid of shape (B, T,N,C), where
B is the batch size, T is the number of frames, N is the
number of points, and C is the channel dimension.

To process this grid efficiently, we employ factorized at-
tention [1], alternating between temporal and spatial oper-
ations. For temporal attention, the grid is reshaped to (B ·
N,T,C), enabling attention across frames for each point.
For spatial (group) attention, it is reshaped to (B ·T,N,C),
enabling attention across points within each frame.

0 2000 4000 6000 8000 10000
Number of tracked points

0.0

0.1

0.2

0.3

0.4

0.5

T
im

e 
pe

r 
fr

am
e,

 [s
]

LocoTrack
BootsTAPIR
CoTracker
Ours offline
Ours online

Figure 2. Efficiency. We evaluate the speed of different track-
ers on DAVIS depending on the number of tracks and report the
average time each tracker takes to process a frame. Our offline
architecture is the fastest among all these models, with LocoTrack
being the fastest tracker to date.

Pre-training. We pre-train both online and offline model
versions on synthetic TAP-Vid-Kubric [3, 5] for 50,000 it-
erations on 32 NVIDIA A100 80GB GPUs with a batch size
of 1 video, which takes around 24 hours for the offline ver-
sion and 35 hours for the online version.

We train CoTracker3 online on videos of length T = 64
with a window size of 16 and sample 384 query points per
video with a bias towards objects. Since the online version
tracks only forward in time, we sample points primarily at
the beginning of the video. We train the offline version on
videos of length T ∈ {30, 31, . . . , 60} with time embed-
dings of size 60. We interpolate time embeddings to the
current sequence length both at training and evaluation. We
sample 512 query points per video uniformly in time. Both
models are trained in bfloat16 with gradient norm clipping
using PyTorch Lightning [4] with PyTorch distributed data
parallel [7]. The optimizer is AdamW [8] with β1 = 0.9,
β2 = 0.999, learning rate 5·10−4, and weight decay 1·10−5.
The optimizer adopts a linear warm-up for 1000 steps fol-
lowed by a cosine learning rate scheduler.

It is possible to train the online model from scratch on
smaller GPUs (e.g., 32×24GB L4) by sampling 128 points
instead of 384 and using 48 frames instead of 64. This re-
duction does not significantly affect performance, except
when tracking several thousand points at a time. Using 8
GPUs instead of 32 increases the training time from 35 to
140 hours.

Scaling. We scale CoTracker3 on a dataset of Internet-like
videos primarily featuring humans and animals. We visu-
alize the scaling pipeline in Fig. 1. To ensure the quality
and relevance of our training data, we use caption-based fil-
tering with specific keywords to select videos containing
real-world content while excluding those with computer-
generated imagery, animation, or natural phenomena that
are challenging to track, such as fire, lights, and water.

When training on real data, we use a similar setup while
reducing the learning rate to 5e − 5 with the same cosine
scheduler without warm-up. We train both online and of-
fline versions for 10,000 iterations with 384 tracks per video
sampled with SIFT on eight randomly selected frames, with
frame sampling biased towards the beginning of the video.

Evaluation. Following [6], when evaluating CoTracker3
online on TAP-Vid, we add 5 × 5 points sampled on a reg-
ular grid and 8 × 8 points sampled on a local grid around
the query point to provide context to the tracker. We do the
same for the scaled offline version during inference. The
Kubric-trained offline version, however, relies on uniform
point sampling during training. For this model, during eval-
uation on TAP-Vid, we instead sample 1000 additional sup-
port points uniformly over time.



Figure 1. Scaling pipeline. Given a video, we randomly choose 8 frames and sample 384 query points across these frames using SIFT [9].
Then, we predict tracks for these query points with the student and randomly selected teacher models. Finally, we compute the difference
between the predicted tracks and update the student model.

B. Performance
In Fig. 2, we compare the speed of CoTracker3 with other
point trackers. We measure the average time it takes for the
method to process one frame, with the number of tracked
points varying between 1 and 10,000. We average this
across 20 videos of varying lengths from DAVIS. Even
though CoTracker and CoTracker3 apply group attention
between tracked points, the time complexity remains linear
thanks to the proxy tokens introduced by [6]. While all the
trackers exhibit linear time complexity with respect to the
number of tracks, CoTracker3 is approximately 30% faster
than LocoTrack [2], the fastest point tracker to date.

C. Additional experiments
Training with the average of teachers’ predictions. In-
terestingly, we found that aggregating the predictions of
multiple teachers instead of using a random teacher does not
improve performance, as shown in Tab. 1, whereas incor-
porating additional teachers into training consistently en-
hances the quality of our student model, as demonstrated in
Tab. 4 of the main paper.

Repeated scaling. We study the effect of iterative scal-
ing to investigate the limits of our multi-teacher scaling
pipeline. Specifically, we scale CoTracker3 offline using
our pipeline, where one of the teachers is the model itself.
We then take this trained student model and attempt to im-
prove it further by re-applying the same scaling pipeline,
but with the original student model replaced by the newly
trained student model as one of the teachers.

We find that this second round of scaling leads to slight
improvements in performance metrics. This suggests that
the student model has already distilled most of the knowl-
edge from the other teachers during the initial training
phase. We report the results in Tab. 2.

Convergence behavior during scaling. We examine the
convergence behavior of our scaling pipeline by fixing the
dataset and all hyperparameters, varying only the number of

Teacher selection strategy Kinetics DAVIS RoboTAP RGB-S

Random 68.2 77.0 78.8 83.3
Averaging 67.4 76.5 77.9 82.4
Median 67.3 76.3 77.3 81.1

Table 1. Supervision. Random sampling of teachers consistently
leads to better δavg on TAP-Vid compared to supervision with ei-
ther the mean or the median of all teachers’ predictions.

Model Average on TAP-Vid

AJ ↑ δavg ↑ OA ↑
Kub+15k 64.0 76.8 90.2

Kub+15k+15k 64.2 76.9 89.7

Table 2. Repeated scaling. We scale CoTracker3 offline, then
start from a scaled model, and scale it again with the scaled model
as one of the teachers. Repeated scaling slightly improves tracking
accuracy.

Num. of iterations Average on TAP-Vid

AJ ↑ δavg ↑ OA ↑
1k 63.3 75.6 87.5

15k 64.0 76.8 90.2
30k 64.4 76.8 89.7
60k 64.4 77.0 89.5

Table 3. Longer training on 15k videos. We train CoTracker3
offline for longer to determine the optimal number of iterations for
a given number of videos. As a trade-off between training costs
and the results obtained, we use the same number of iterations as
the number of videos.

iterations over the dataset. We show in Tab. 3 that increas-
ing the number of iterations leads to improved performance
on TAP-Vid but with diminishing returns. Specifically, we



Figure 3. Occlusions. We occlude all tracked points with black circles of different sizes for several consecutive frames. We experiment
with different scenarios, discussed in the text. For each, we also visualize the predicted positions of the tracked points.

Radius (% of img. width) δavg ↑

0 76.9
4 48.8
8 42.2
12 39.8
20 36.4
40 30.2
80 23.3

100 19.9

Table 4. Varying size of oc-
clusions. We report tracking ac-
curacy on DAVIS depending on
the radius of artificially added oc-
cluding circles, which cover all
tracked points for half of the
video (30 frames on average, see
Fig. 3).

Duration (% of vid. len.) δavg ↑

0 76.9
20 61.3
40 48.2
60 37.5
80 29.9
100 21.1

Table 5. Varying duration of
occlusions. We report track-
ing accuracy on DAVIS de-
pending on the duration of ar-
tificially added occluding cir-
cles with radius of 8% of
the image width. Occluders
cover all the tracked points,
see Fig. 3.

observe a saturation point beyond which further increases in
the number of training iterations do not yield significant im-
provements in model quality. We thus use the same number
of iterations as the number of training videos with a batch
size of 32, iterating over each video 32 times.

Occlusions. We investigate the effect of occlusions of dif-
ferent sizes and lengths on the tracking accuracy on TAP-
Vid DAVIS. Specifically, we occlude all the tracked points
with black circles of different sizes for several consecutive
frames (see Fig. 3). We then measure how this affects the
tracking accuracy using offline tracking in various scenar-
ios, which is discussed next.

First, we show that CoTracker3 can successfully utilize
temporal context to track points through occlusions. To do
so, we occlude all tracked points in each video for half of
the video length, starting right after the query frame, but let
the points be visible in the second half. The occluding circle
is centered on the ground truth track. We vary the radius of
the occluding circle and increase it from 0% to 100% of
the video width. As Tab. 4 shows, the tracking accuracy is
still 19.9%, even with a radius of 100%; this is because the
model sees the second half of the video and can track points
there. If we occlude all frames rather than half with a radius
of 100%, the accuracy drops to 2%.

Second, we show that CoTracker3 can also successfully
utilize the spatial context given by other tracked points. To
do so, we fix the radius of the occlusion to 8% of the image
width and vary the duration of the occlusion from 0 to 100%
of the video length, with the average video length being 60



Figure 4. Failure cases. Featureless surfaces is a common mode of failure: the model cannot track points sampled in the sky or on the
surface of water.

frames. In Tab. 5, short occlusions of 20% of video length
(12 frames on average) affect performance, but not signif-
icantly: accuracy drops from 76.9% to 61.3%. When oc-
cluding points for the whole duration of the video (100%),
the model can still approximate the location of these points
due to the presence of unoccluded support points (21.1%
accuracy vs 2% when all points are occluded).

D. Failure cases
In Fig. 4, we show examples of failure cases. We track a
grid of 40× 40 points from the first frame and demonstrate
that the model cannot reliably track points sampled in the
sky or on the surface of water, partly because the task is
ambiguous in these cases: it is unclear whether the tracked
point in the sky should remain static or move with the cam-
era. Other common sources of failure are tracking shadows
of objects and tracking through long occlusions.

E. Limitations
A key limitation of our pseudo-labeling pipeline is its re-
liance on the quality and diversity of teacher models. The
observed saturation in performance on TAP-Vid during
scaling suggests that the student model absorbs knowledge
from all the teachers and, after a certain point, struggles to
improve further. Thus, we need stronger or more diverse
teacher models to achieve additional gains for the student
model.

References
[1] Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is

space-time attention all you need for video understanding? In
Icml, page 4, 2021. 1

[2] Seokju Cho, Jiahui Huang, Jisu Nam, Honggyu An, Seungry-

ong Kim, and Joon-Young Lee. Local all-pair correspondence
for point tracking. Proc. ECCV, 2024. 2

[3] Carl Doersch, Ankush Gupta, Larisa Markeeva, Adrià Re-
casens, Lucas Smaira, Yusuf Aytar, João Carreira, Andrew
Zisserman, and Yi Yang. Tap-vid: A benchmark for tracking
any point in a video. arXiv, 2022. 1

[4] William Falcon and The PyTorch Lightning team. PyTorch
Lightning, 2019. 1

[5] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, et al. Kubric: A
scalable dataset generator. In Proc. CVPR, 2022. 1

[6] Nikita Karaev, Ignacio Rocco, Benjamin Graham, Natalia
Neverova, Andrea Vedaldi, and Christian Rupprecht. Co-
tracker: It is better to track together. Proc. ECCV, 2024. 1,
2

[7] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar,
Pieter Noordhuis, Teng Li, Adam Paszke, Jeff Smith, Brian
Vaughan, Pritam Damania, and Soumith Chintala. Pytorch
distributed: Experiences on accelerating data parallel training,
2020. 1

[8] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 1

[9] David G Lowe. Object recognition from local scale-invariant
features. In Proc. ICCV, 1999. 2


	Implementation details
	Performance
	Additional experiments
	Failure cases
	Limitations

